Shadowing and $\omega $-limit sets of circular Julia sets

In this paper we consider quadratic polynomials on the complex plane ${f}_{c} (z)= {z}^{2} + c$ and their associated Julia sets, ${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an $n$-tupling. In this case ${J}_{c} $ contains subsets that are homeomorphi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2015-06, Vol.35 (4), p.1045-1055
Hauptverfasser: BARWELL, ANDREW D., MEDDAUGH, JONATHAN, RAINES, BRIAN E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 4
container_start_page 1045
container_title Ergodic theory and dynamical systems
container_volume 35
creator BARWELL, ANDREW D.
MEDDAUGH, JONATHAN
RAINES, BRIAN E.
description In this paper we consider quadratic polynomials on the complex plane ${f}_{c} (z)= {z}^{2} + c$ and their associated Julia sets, ${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an $n$-tupling. In this case ${J}_{c} $ contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that ${f}_{c} : {J}_{c} \rightarrow {J}_{c} $ has shadowing, and we classify all $\omega $-limit sets for these maps by showing that a closed set $R\subseteq {J}_{c} $ is internally chain transitive if, and only if, there is some $z\in {J}_{c} $ with $\omega (z)= R$.
doi_str_mv 10.1017/etds.2013.94
format Article
fullrecord <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_etds_2013_94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2013_94</cupid><sourcerecordid>10_1017_etds_2013_94</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-a934f87fb713a25b2cb5d17728672ecba415588ccc29bde1c2cc01914a197c343</originalsourceid><addsrcrecordid>eNotz0tLxDAUBeAgCtbRnT8gi9mm5uYxaZYy-GTAhboTSnKT1gx9QNPi39eqqwNncQ4fIdfAS-BgbuIccik4yNKqE1KA2lmmFJhTUnBQkslKm3NykfORcy7B6ILY108Xxq80tNQNgW4_xj62jm5Zl_o00xznTMeGYppw6dxEn5cuud_6kpw1rsvx6j835P3-7m3_yA4vD0_72wNDsGpmzkrVVKbxBqQT2gv0OoAxotoZEdE7BVpXFSIK60MEFIgcLCgH1qBUckPKv110vZ9SaGN9HJdp-PmsgdcrvF7h9QqvrZLf1f9K_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shadowing and $\omega $-limit sets of circular Julia sets</title><source>Cambridge Journals</source><creator>BARWELL, ANDREW D. ; MEDDAUGH, JONATHAN ; RAINES, BRIAN E.</creator><creatorcontrib>BARWELL, ANDREW D. ; MEDDAUGH, JONATHAN ; RAINES, BRIAN E.</creatorcontrib><description>In this paper we consider quadratic polynomials on the complex plane ${f}_{c} (z)= {z}^{2} + c$ and their associated Julia sets, ${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an $n$-tupling. In this case ${J}_{c} $ contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that ${f}_{c} : {J}_{c} \rightarrow {J}_{c} $ has shadowing, and we classify all $\omega $-limit sets for these maps by showing that a closed set $R\subseteq {J}_{c} $ is internally chain transitive if, and only if, there is some $z\in {J}_{c} $ with $\omega (z)= R$.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2013.94</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2015-06, Vol.35 (4), p.1045-1055</ispartof><rights>Cambridge University Press, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385713000941/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>BARWELL, ANDREW D.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>RAINES, BRIAN E.</creatorcontrib><title>Shadowing and $\omega $-limit sets of circular Julia sets</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>In this paper we consider quadratic polynomials on the complex plane ${f}_{c} (z)= {z}^{2} + c$ and their associated Julia sets, ${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an $n$-tupling. In this case ${J}_{c} $ contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that ${f}_{c} : {J}_{c} \rightarrow {J}_{c} $ has shadowing, and we classify all $\omega $-limit sets for these maps by showing that a closed set $R\subseteq {J}_{c} $ is internally chain transitive if, and only if, there is some $z\in {J}_{c} $ with $\omega (z)= R$.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotz0tLxDAUBeAgCtbRnT8gi9mm5uYxaZYy-GTAhboTSnKT1gx9QNPi39eqqwNncQ4fIdfAS-BgbuIccik4yNKqE1KA2lmmFJhTUnBQkslKm3NykfORcy7B6ILY108Xxq80tNQNgW4_xj62jm5Zl_o00xznTMeGYppw6dxEn5cuud_6kpw1rsvx6j835P3-7m3_yA4vD0_72wNDsGpmzkrVVKbxBqQT2gv0OoAxotoZEdE7BVpXFSIK60MEFIgcLCgH1qBUckPKv110vZ9SaGN9HJdp-PmsgdcrvF7h9QqvrZLf1f9K_w</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>BARWELL, ANDREW D.</creator><creator>MEDDAUGH, JONATHAN</creator><creator>RAINES, BRIAN E.</creator><general>Cambridge University Press</general><scope/></search><sort><creationdate>20150601</creationdate><title>Shadowing and $\omega $-limit sets of circular Julia sets</title><author>BARWELL, ANDREW D. ; MEDDAUGH, JONATHAN ; RAINES, BRIAN E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-a934f87fb713a25b2cb5d17728672ecba415588ccc29bde1c2cc01914a197c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARWELL, ANDREW D.</creatorcontrib><creatorcontrib>MEDDAUGH, JONATHAN</creatorcontrib><creatorcontrib>RAINES, BRIAN E.</creatorcontrib><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARWELL, ANDREW D.</au><au>MEDDAUGH, JONATHAN</au><au>RAINES, BRIAN E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shadowing and $\omega $-limit sets of circular Julia sets</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>35</volume><issue>4</issue><spage>1045</spage><epage>1055</epage><pages>1045-1055</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>In this paper we consider quadratic polynomials on the complex plane ${f}_{c} (z)= {z}^{2} + c$ and their associated Julia sets, ${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an $n$-tupling. In this case ${J}_{c} $ contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that ${f}_{c} : {J}_{c} \rightarrow {J}_{c} $ has shadowing, and we classify all $\omega $-limit sets for these maps by showing that a closed set $R\subseteq {J}_{c} $ is internally chain transitive if, and only if, there is some $z\in {J}_{c} $ with $\omega (z)= R$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2013.94</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2015-06, Vol.35 (4), p.1045-1055
issn 0143-3857
1469-4417
language eng
recordid cdi_cambridge_journals_10_1017_etds_2013_94
source Cambridge Journals
title Shadowing and $\omega $-limit sets of circular Julia sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shadowing%20and%20$%5Comega%20$-limit%20sets%20of%20circular%20Julia%20sets&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BARWELL,%20ANDREW%20D.&rft.date=2015-06-01&rft.volume=35&rft.issue=4&rft.spage=1045&rft.epage=1055&rft.pages=1045-1055&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2013.94&rft_dat=%3Ccambridge%3E10_1017_etds_2013_94%3C/cambridge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_etds_2013_94&rfr_iscdi=true