Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations
We consider ℝn skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subj...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2012-08, Vol.32 (4), p.1435-1443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1443 |
---|---|
container_issue | 4 |
container_start_page | 1435 |
container_title | Ergodic theory and dynamical systems |
container_volume | 32 |
creator | MOSS, A. WALKDEN, C. P. |
description | We consider ℝn skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ→ℝN for which the skew-product ϕf(x,v)=(ϕ(x),v+f(x)) on Λ×ℝN has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor. |
doi_str_mv | 10.1017/S0143385711000228 |
format | Article |
fullrecord | <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_S0143385711000228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385711000228</cupid><sourcerecordid>10_1017_S0143385711000228</sourcerecordid><originalsourceid>FETCH-cambridge_journals_10_1017_S01433857110002283</originalsourceid><addsrcrecordid>eNqdz70OgjAUBeDGaCL-PIBbXwDtpSg4G427bg6kYNGayiVtNbL7Gr6cTyKom5vTTe53znAIGQEbA4NosmEQch5PIwDGWBDELeJBOJv7YQhRm3gN-413Sc_aU53hEE09sts4kWpJHZao8aAyoakzorDKqatyFS0NltI4JS3FnD7vj8KXNyfrABbv17GqPUWtsk8xR3MWrtEB6eRCWzn83j7hq-V2sfYzcU6N2h9kcsKLKWpLgCXNjuRnB_-v9QKSU1Nb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations</title><source>Cambridge University Press Journals Complete</source><creator>MOSS, A. ; WALKDEN, C. P.</creator><creatorcontrib>MOSS, A. ; WALKDEN, C. P.</creatorcontrib><description>We consider ℝn skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ→ℝN for which the skew-product ϕf(x,v)=(ϕ(x),v+f(x)) on Λ×ℝN has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385711000228</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2012-08, Vol.32 (4), p.1435-1443</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385711000228/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>MOSS, A.</creatorcontrib><creatorcontrib>WALKDEN, C. P.</creatorcontrib><title>Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We consider ℝn skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ→ℝN for which the skew-product ϕf(x,v)=(ϕ(x),v+f(x)) on Λ×ℝN has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdz70OgjAUBeDGaCL-PIBbXwDtpSg4G427bg6kYNGayiVtNbL7Gr6cTyKom5vTTe53znAIGQEbA4NosmEQch5PIwDGWBDELeJBOJv7YQhRm3gN-413Sc_aU53hEE09sts4kWpJHZao8aAyoakzorDKqatyFS0NltI4JS3FnD7vj8KXNyfrABbv17GqPUWtsk8xR3MWrtEB6eRCWzn83j7hq-V2sfYzcU6N2h9kcsKLKWpLgCXNjuRnB_-v9QKSU1Nb</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>MOSS, A.</creator><creator>WALKDEN, C. P.</creator><general>Cambridge University Press</general><scope/></search><sort><creationdate>201208</creationdate><title>Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations</title><author>MOSS, A. ; WALKDEN, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cambridge_journals_10_1017_S01433857110002283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOSS, A.</creatorcontrib><creatorcontrib>WALKDEN, C. P.</creatorcontrib><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOSS, A.</au><au>WALKDEN, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2012-08</date><risdate>2012</risdate><volume>32</volume><issue>4</issue><spage>1435</spage><epage>1443</epage><pages>1435-1443</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We consider ℝn skew-products of a class of hyperbolic dynamical systems. It was proved by Niţică and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257–269] that for an Anosov diffeomorphism ϕ of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ→ℝN for which the skew-product ϕf(x,v)=(ϕ(x),v+f(x)) on Λ×ℝN has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385711000228</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2012-08, Vol.32 (4), p.1435-1443 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_cambridge_journals_10_1017_S0143385711000228 |
source | Cambridge University Press Journals Complete |
title | Stable topological transitivity properties of ℝn-extensions of hyperbolic transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20topological%20transitivity%20properties%20of%20%E2%84%9Dn-extensions%20of%20hyperbolic%20transformations&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=MOSS,%20A.&rft.date=2012-08&rft.volume=32&rft.issue=4&rft.spage=1435&rft.epage=1443&rft.pages=1435-1443&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385711000228&rft_dat=%3Ccambridge%3E10_1017_S0143385711000228%3C/cambridge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0143385711000228&rfr_iscdi=true |