The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric

We fully describe the horofunction boundary δhL2 with the word metric associated with the generating set {t, at} (i.e. the metric arising in the Diestel–Leader graph DL(2, 2)). The visual boundary δ∞L2 with this metric is a subset of δhL2. Although δ∞L2 does not embed continuously in δhL2, it natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue
container_start_page 111
container_title
container_volume
description We fully describe the horofunction boundary δhL2 with the word metric associated with the generating set {t, at} (i.e. the metric arising in the Diestel–Leader graph DL(2, 2)). The visual boundary δ∞L2 with this metric is a subset of δhL2. Although δ∞L2 does not embed continuously in δhL2, it naturally splits into two subspaces, each of which is a punctured Cantor set and does embed continuously. The height function on DL(2, 2) provides a natural stratification of δhL2, in which countably many non-Busemann points interpolate between the two halves of δ∞L2. Furthermore, the height function and its negation are themselves non-Busemann horofunctions in δhL2 and are global fixed points of the action of L2.
doi_str_mv 10.1017/9781108526203.008
format Book Chapter
fullrecord <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_corebooks_9781108526203_c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>9781108526203_c7</cupid><sourcerecordid>9781108526203_c7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-c4ccb5488c73a60f92fad60a8eba1398dc3fd27c62ec0969a66052a5efda85df3</originalsourceid><addsrcrecordid>eNplkLtOAzEQRY0QEhDyAXRuqFDC2M567RICJEgr0QTaaNaPxLAbR15HiI5_4A_5EsKjiVKN7pyjGekScs5gyICVV7pUjIEquOQghgDqgPR3dofk9CeMRCk5Oyb9rnsBAM54obU-Ic-zpaPTmKLfrEwOcUVv4mZlMb3T6GnewgrbdRMWy-wSnaS4WdOK07eQl7_0Nrguu-br47NyaLdK63IK5owceWw61_-fPfJ0fzcbTwfV4-RhfF0NDBMyD8zImLoYKWVKgRK85h6tBFSuRia0skZ4y0sjuTOgpUYpoeBYOG9RFdaLHrn8u2uwrVOwCzc3Mbk6xtduvtPDfPuiRy727Drue9-_jWOL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric</title><source>eBook Academic Collection - Worldwide</source><contributor>Broaddus, N.</contributor><creatorcontrib>Broaddus, N.</creatorcontrib><description>We fully describe the horofunction boundary δhL2 with the word metric associated with the generating set {t, at} (i.e. the metric arising in the Diestel–Leader graph DL(2, 2)). The visual boundary δ∞L2 with this metric is a subset of δhL2. Although δ∞L2 does not embed continuously in δhL2, it naturally splits into two subspaces, each of which is a punctured Cantor set and does embed continuously. The height function on DL(2, 2) provides a natural stratification of δhL2, in which countably many non-Busemann points interpolate between the two halves of δ∞L2. Furthermore, the height function and its negation are themselves non-Busemann horofunctions in δhL2 and are global fixed points of the action of L2.</description><identifier>ISBN: 1108437621</identifier><identifier>ISBN: 9781108437622</identifier><identifier>EISBN: 9781108526203</identifier><identifier>EISBN: 1108526209</identifier><identifier>DOI: 10.1017/9781108526203.008</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Topological Methods in Group Theory, 2018, p.111-134</ispartof><rights>Cambridge University Press 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Broaddus, N.</contributor><title>The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric</title><title>Topological Methods in Group Theory</title><description>We fully describe the horofunction boundary δhL2 with the word metric associated with the generating set {t, at} (i.e. the metric arising in the Diestel–Leader graph DL(2, 2)). The visual boundary δ∞L2 with this metric is a subset of δhL2. Although δ∞L2 does not embed continuously in δhL2, it naturally splits into two subspaces, each of which is a punctured Cantor set and does embed continuously. The height function on DL(2, 2) provides a natural stratification of δhL2, in which countably many non-Busemann points interpolate between the two halves of δ∞L2. Furthermore, the height function and its negation are themselves non-Busemann horofunctions in δhL2 and are global fixed points of the action of L2.</description><isbn>1108437621</isbn><isbn>9781108437622</isbn><isbn>9781108526203</isbn><isbn>1108526209</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNplkLtOAzEQRY0QEhDyAXRuqFDC2M567RICJEgr0QTaaNaPxLAbR15HiI5_4A_5EsKjiVKN7pyjGekScs5gyICVV7pUjIEquOQghgDqgPR3dofk9CeMRCk5Oyb9rnsBAM54obU-Ic-zpaPTmKLfrEwOcUVv4mZlMb3T6GnewgrbdRMWy-wSnaS4WdOK07eQl7_0Nrguu-br47NyaLdK63IK5owceWw61_-fPfJ0fzcbTwfV4-RhfF0NDBMyD8zImLoYKWVKgRK85h6tBFSuRia0skZ4y0sjuTOgpUYpoeBYOG9RFdaLHrn8u2uwrVOwCzc3Mbk6xtduvtPDfPuiRy727Drue9-_jWOL</recordid><startdate>20180906</startdate><enddate>20180906</enddate><general>Cambridge University Press</general><scope/></search><sort><creationdate>20180906</creationdate><title>The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-c4ccb5488c73a60f92fad60a8eba1398dc3fd27c62ec0969a66052a5efda85df3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broaddus, N.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric</atitle><btitle>Topological Methods in Group Theory</btitle><date>2018-09-06</date><risdate>2018</risdate><spage>111</spage><epage>134</epage><pages>111-134</pages><isbn>1108437621</isbn><isbn>9781108437622</isbn><eisbn>9781108526203</eisbn><eisbn>1108526209</eisbn><abstract>We fully describe the horofunction boundary δhL2 with the word metric associated with the generating set {t, at} (i.e. the metric arising in the Diestel–Leader graph DL(2, 2)). The visual boundary δ∞L2 with this metric is a subset of δhL2. Although δ∞L2 does not embed continuously in δhL2, it naturally splits into two subspaces, each of which is a punctured Cantor set and does embed continuously. The height function on DL(2, 2) provides a natural stratification of δhL2, in which countably many non-Busemann points interpolate between the two halves of δ∞L2. Furthermore, the height function and its negation are themselves non-Busemann horofunctions in δhL2 and are global fixed points of the action of L2.</abstract><pub>Cambridge University Press</pub><doi>10.1017/9781108526203.008</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1108437621
ispartof Topological Methods in Group Theory, 2018, p.111-134
issn
language eng
recordid cdi_cambridge_corebooks_9781108526203_c7
source eBook Academic Collection - Worldwide
title The Horofunction Boundary of the Lamplighter Group L2 with the Diestel–Leader metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Horofunction%20Boundary%20of%20the%20Lamplighter%20Group%20L2%20with%20the%20Diestel%E2%80%93Leader%20metric&rft.btitle=Topological%20Methods%20in%20Group%20Theory&rft.au=Broaddus,%20N.&rft.date=2018-09-06&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.isbn=1108437621&rft.isbn_list=9781108437622&rft_id=info:doi/10.1017/9781108526203.008&rft_dat=%3Ccambridge%3E9781108526203_c7%3C/cambridge%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781108526203&rft.eisbn_list=1108526209&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=9781108526203_c7&rfr_iscdi=true