Distance regular graphs and the Hamming scheme

In this chapter we explore a theory which gives an alternative approach to some of the diffusion processes presented in the introduction (namely the random walk on the discrete circle, the Ehrenfest and the Bernoulli––Laplace models). In some sense, this can be regarded as a theory of (finite) Gelfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ceccherini-Silberstein, Tullio, Scarabotti, Fabio, Tolli, Filippo
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 147
container_title
container_volume
creator Ceccherini-Silberstein, Tullio
Scarabotti, Fabio
Tolli, Filippo
description In this chapter we explore a theory which gives an alternative approach to some of the diffusion processes presented in the introduction (namely the random walk on the discrete circle, the Ehrenfest and the Bernoulli––Laplace models). In some sense, this can be regarded as a theory of (finite) Gelfand pairs without group theory. Thus, Sections 5.1, 5.2, and 5.3 (as well as Sections 6.1 and 6.3 in the next chapter) do not rely on group representation theory and can be read independently of Chapters 3 and 4. The connection with group theory will be presented in the final part of Section 5.4 and in Section 6.2.Harmonic analysis on distance-regular graphsIn this section we focus our attention on a remarkable class of finite graphs for which it is possible to develop a nice harmonic analysis. Our exposition is inspired to the monographs by Bailey and by Bannai and Ito. We would like to mention that during our preparation of this book we attended a minicourse by Rosemary Bailey on association schemes which undoubtedly turned out to be very useful and stimulating for us.We shall denote by X a finite, connected (undirected) graph without self-loops. Recall that given two vertices x, y ∈ X, their distance d(x, y) is the length of the shortest path joining x and y. This way, (X, d) becomes a metric space.
doi_str_mv 10.1017/CBO9780511619823.006
format Book Chapter
fullrecord <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_corebooks_9780511619823_xml_CBO9780511619823A053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>9780511619823_xml_CBO9780511619823A053</cupid><sourcerecordid>9780511619823_xml_CBO9780511619823A053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-7deceae0eac95a55045c3e2dd34c1d3981d7f0340349e2481290e384d1cafb473</originalsourceid><addsrcrecordid>eNqNkM1KxEAQhEdEUNa8gYe8QGJ3ZiaZwVOMuiss7EXPYTLT-dH8SCaCj2_AvaxebBqKKugPqhm7QYgRMLst7g86UyARU9Qq4TFAesaCk-z86BNUivNUXbLA-zdYB1OlOVyx-KHzixkthTM1n72Zw2Y2H60PzejCpaVwZ4ahG5vQ25YGumYXtek9BUfdsNenx5diF-0P2-ci30cWtVyizJElQ0DGammkBCEtp8Q5Liw6rhW6rAYu1tWUCIWJBuJKOLSmrkTGNyz_4VozVHPnGirtNFM1Te--PKlYfg19-fsXOUi-Mu7-MKrpv9ffaG5f4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Distance regular graphs and the Hamming scheme</title><source>Cambridge University Press online books</source><source>Cambridge Core All Books</source><creator>Ceccherini-Silberstein, Tullio ; Scarabotti, Fabio ; Tolli, Filippo</creator><creatorcontrib>Ceccherini-Silberstein, Tullio ; Scarabotti, Fabio ; Tolli, Filippo</creatorcontrib><description>In this chapter we explore a theory which gives an alternative approach to some of the diffusion processes presented in the introduction (namely the random walk on the discrete circle, the Ehrenfest and the Bernoulli––Laplace models). In some sense, this can be regarded as a theory of (finite) Gelfand pairs without group theory. Thus, Sections 5.1, 5.2, and 5.3 (as well as Sections 6.1 and 6.3 in the next chapter) do not rely on group representation theory and can be read independently of Chapters 3 and 4. The connection with group theory will be presented in the final part of Section 5.4 and in Section 6.2.Harmonic analysis on distance-regular graphsIn this section we focus our attention on a remarkable class of finite graphs for which it is possible to develop a nice harmonic analysis. Our exposition is inspired to the monographs by Bailey and by Bannai and Ito. We would like to mention that during our preparation of this book we attended a minicourse by Rosemary Bailey on association schemes which undoubtedly turned out to be very useful and stimulating for us.We shall denote by X a finite, connected (undirected) graph without self-loops. Recall that given two vertices x, y ∈ X, their distance d(x, y) is the length of the shortest path joining x and y. This way, (X, d) becomes a metric space.</description><identifier>ISBN: 9780521883368</identifier><identifier>ISBN: 0521883369</identifier><identifier>EISBN: 9780511619823</identifier><identifier>EISBN: 0511619820</identifier><identifier>DOI: 10.1017/CBO9780511619823.006</identifier><language>eng</language><ispartof>Harmonic Analysis on Finite Groups, 2008, p.147-167</ispartof><rights>T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/CBO9780511619823A053/type/book_part$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>779,780,784,793,9996,27923,54064,56112,56184,78696</link.rule.ids></links><search><creatorcontrib>Ceccherini-Silberstein, Tullio</creatorcontrib><creatorcontrib>Scarabotti, Fabio</creatorcontrib><creatorcontrib>Tolli, Filippo</creatorcontrib><title>Distance regular graphs and the Hamming scheme</title><title>Harmonic Analysis on Finite Groups</title><description>In this chapter we explore a theory which gives an alternative approach to some of the diffusion processes presented in the introduction (namely the random walk on the discrete circle, the Ehrenfest and the Bernoulli––Laplace models). In some sense, this can be regarded as a theory of (finite) Gelfand pairs without group theory. Thus, Sections 5.1, 5.2, and 5.3 (as well as Sections 6.1 and 6.3 in the next chapter) do not rely on group representation theory and can be read independently of Chapters 3 and 4. The connection with group theory will be presented in the final part of Section 5.4 and in Section 6.2.Harmonic analysis on distance-regular graphsIn this section we focus our attention on a remarkable class of finite graphs for which it is possible to develop a nice harmonic analysis. Our exposition is inspired to the monographs by Bailey and by Bannai and Ito. We would like to mention that during our preparation of this book we attended a minicourse by Rosemary Bailey on association schemes which undoubtedly turned out to be very useful and stimulating for us.We shall denote by X a finite, connected (undirected) graph without self-loops. Recall that given two vertices x, y ∈ X, their distance d(x, y) is the length of the shortest path joining x and y. This way, (X, d) becomes a metric space.</description><isbn>9780521883368</isbn><isbn>0521883369</isbn><isbn>9780511619823</isbn><isbn>0511619820</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2008</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqNkM1KxEAQhEdEUNa8gYe8QGJ3ZiaZwVOMuiss7EXPYTLT-dH8SCaCj2_AvaxebBqKKugPqhm7QYgRMLst7g86UyARU9Qq4TFAesaCk-z86BNUivNUXbLA-zdYB1OlOVyx-KHzixkthTM1n72Zw2Y2H60PzejCpaVwZ4ahG5vQ25YGumYXtek9BUfdsNenx5diF-0P2-ci30cWtVyizJElQ0DGammkBCEtp8Q5Liw6rhW6rAYu1tWUCIWJBuJKOLSmrkTGNyz_4VozVHPnGirtNFM1Te--PKlYfg19-fsXOUi-Mu7-MKrpv9ffaG5f4Q</recordid><startdate>20080306</startdate><enddate>20080306</enddate><creator>Ceccherini-Silberstein, Tullio</creator><creator>Scarabotti, Fabio</creator><creator>Tolli, Filippo</creator><scope/></search><sort><creationdate>20080306</creationdate><title>Distance regular graphs and the Hamming scheme</title><author>Ceccherini-Silberstein, Tullio ; Scarabotti, Fabio ; Tolli, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-7deceae0eac95a55045c3e2dd34c1d3981d7f0340349e2481290e384d1cafb473</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ceccherini-Silberstein, Tullio</creatorcontrib><creatorcontrib>Scarabotti, Fabio</creatorcontrib><creatorcontrib>Tolli, Filippo</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceccherini-Silberstein, Tullio</au><au>Scarabotti, Fabio</au><au>Tolli, Filippo</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Distance regular graphs and the Hamming scheme</atitle><btitle>Harmonic Analysis on Finite Groups</btitle><date>2008-03-06</date><risdate>2008</risdate><spage>147</spage><epage>167</epage><pages>147-167</pages><isbn>9780521883368</isbn><isbn>0521883369</isbn><eisbn>9780511619823</eisbn><eisbn>0511619820</eisbn><abstract>In this chapter we explore a theory which gives an alternative approach to some of the diffusion processes presented in the introduction (namely the random walk on the discrete circle, the Ehrenfest and the Bernoulli––Laplace models). In some sense, this can be regarded as a theory of (finite) Gelfand pairs without group theory. Thus, Sections 5.1, 5.2, and 5.3 (as well as Sections 6.1 and 6.3 in the next chapter) do not rely on group representation theory and can be read independently of Chapters 3 and 4. The connection with group theory will be presented in the final part of Section 5.4 and in Section 6.2.Harmonic analysis on distance-regular graphsIn this section we focus our attention on a remarkable class of finite graphs for which it is possible to develop a nice harmonic analysis. Our exposition is inspired to the monographs by Bailey and by Bannai and Ito. We would like to mention that during our preparation of this book we attended a minicourse by Rosemary Bailey on association schemes which undoubtedly turned out to be very useful and stimulating for us.We shall denote by X a finite, connected (undirected) graph without self-loops. Recall that given two vertices x, y ∈ X, their distance d(x, y) is the length of the shortest path joining x and y. This way, (X, d) becomes a metric space.</abstract><doi>10.1017/CBO9780511619823.006</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9780521883368
ispartof Harmonic Analysis on Finite Groups, 2008, p.147-167
issn
language eng
recordid cdi_cambridge_corebooks_9780511619823_xml_CBO9780511619823A053
source Cambridge University Press online books; Cambridge Core All Books
title Distance regular graphs and the Hamming scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Distance%20regular%20graphs%20and%20the%20Hamming%20scheme&rft.btitle=Harmonic%20Analysis%20on%20Finite%20Groups&rft.au=Ceccherini-Silberstein,%20Tullio&rft.date=2008-03-06&rft.spage=147&rft.epage=167&rft.pages=147-167&rft.isbn=9780521883368&rft.isbn_list=0521883369&rft_id=info:doi/10.1017/CBO9780511619823.006&rft_dat=%3Ccambridge%3E9780511619823_xml_CBO9780511619823A053%3C/cambridge%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780511619823&rft.eisbn_list=0511619820&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=9780511619823_xml_CBO9780511619823A053&rfr_iscdi=true