Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1

4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2011-04, Vol.84 (4), p.743-751
Hauptverfasser: Keating, Aileen F, Fernandez, Shannon M, Mark-Kappeler, Connie J, Sen, Nivedita, Sipes, I. Glenn, Hoyer, Patricia B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 4
container_start_page 743
container_title Biology of reproduction
container_volume 84
creator Keating, Aileen F
Fernandez, Shannon M
Mark-Kappeler, Connie J
Sen, Nivedita
Sipes, I. Glenn
Hoyer, Patricia B
description 4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distribution of KIT and its downstream PIK3-activated proteins, AKT and FOXO3. Postnatal Day 4 Fischer 344 rat ovaries were cultured in control media ± VCD (30 μM) for 2–8 days (d2–d8). KIT, AKT, phosphorylated AKT, FOXO3, and pFOXO3 protein levels were assessed by Western blotting and/or immunofluorescence staining with confocal microscopy. Phosphorylated AKT was decreased (P < 0.05) in oocyte nuclei in primordial (39% decrease) and small primary (37% decrease) follicles within 2 days of VCD exposure. After d4, VCD reduced (P < 0.05) oocyte staining for KIT (primordial, 44% decrease; small primary, 39% decrease) and FOXO3 (primordial, 40% decrease; small primary, 36% decrease) protein. Total AKT and pFOXO3 were not affected by VCD at any time. Akt1 mRNA, as measured by quantitative RT-PCR, was reduced (P < 0.05) by 23% on d4 of VCD exposure, but returned to control levels on d6 and d8. VCD exposure reduced Foxo3a mRNA by 26% on d6 (P < 0.05) and by 23% on d8 (P < 0.1). These results demonstrate that the earliest observed effect of VCD is an inhibition of phosphorylation and nuclear localization of AKT in the oocyte of primordial and small primary follicles. This event is followed by reductions in KIT and FOXO3 protein subcellular distribution prior to changes in mRNA. Thus, these findings further support that VCD induces ovotoxicity by directly targeting the oocyte through posttranslational inhibition of KIT-mediated signaling components.
doi_str_mv 10.1095/biolreprod.110.087650
format Article
fullrecord <record><control><sourceid>bioone</sourceid><recordid>TN_cdi_bioone_primary_10_1095_biolreprod_110_087650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>bioone_primary_10_1095_biolreprod_110_087650</sourcerecordid><originalsourceid>FETCH-bioone_primary_10_1095_biolreprod_110_0876503</originalsourceid><addsrcrecordid>eNqdz91KAzEQBeAgCq4_jyDMC2ydbLrb9tofLEUsKt6G7HbaHUmTJQnavL0rCt57NXCGA-cT4kriROKivm7Z20BD8JuJHDOcz5oaj0Qh62pRzqpmfiwKRGxKpRp1Ks5ifEeUU1WpQtDS9dxyYu_Ab2G9XCl44Z0zlt0O1ib1nybDI-1bChHaDKknePrwyR-4My7BtHxjl22XO-t7OpAjuGUaxveGgB08mxTlhTjZGhvp8veeC3V_93rzUI7TvSM9BN6bkLVE_S3SfyI9ivSPSP2v9QWHlFm5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>BioOne Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Keating, Aileen F ; Fernandez, Shannon M ; Mark-Kappeler, Connie J ; Sen, Nivedita ; Sipes, I. Glenn ; Hoyer, Patricia B</creator><creatorcontrib>Keating, Aileen F ; Fernandez, Shannon M ; Mark-Kappeler, Connie J ; Sen, Nivedita ; Sipes, I. Glenn ; Hoyer, Patricia B</creatorcontrib><description>4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distribution of KIT and its downstream PIK3-activated proteins, AKT and FOXO3. Postnatal Day 4 Fischer 344 rat ovaries were cultured in control media ± VCD (30 μM) for 2–8 days (d2–d8). KIT, AKT, phosphorylated AKT, FOXO3, and pFOXO3 protein levels were assessed by Western blotting and/or immunofluorescence staining with confocal microscopy. Phosphorylated AKT was decreased (P &lt; 0.05) in oocyte nuclei in primordial (39% decrease) and small primary (37% decrease) follicles within 2 days of VCD exposure. After d4, VCD reduced (P &lt; 0.05) oocyte staining for KIT (primordial, 44% decrease; small primary, 39% decrease) and FOXO3 (primordial, 40% decrease; small primary, 36% decrease) protein. Total AKT and pFOXO3 were not affected by VCD at any time. Akt1 mRNA, as measured by quantitative RT-PCR, was reduced (P &lt; 0.05) by 23% on d4 of VCD exposure, but returned to control levels on d6 and d8. VCD exposure reduced Foxo3a mRNA by 26% on d6 (P &lt; 0.05) and by 23% on d8 (P &lt; 0.1). These results demonstrate that the earliest observed effect of VCD is an inhibition of phosphorylation and nuclear localization of AKT in the oocyte of primordial and small primary follicles. This event is followed by reductions in KIT and FOXO3 protein subcellular distribution prior to changes in mRNA. Thus, these findings further support that VCD induces ovotoxicity by directly targeting the oocyte through posttranslational inhibition of KIT-mediated signaling components.</description><identifier>ISSN: 0006-3363</identifier><identifier>EISSN: 1529-7268</identifier><identifier>DOI: 10.1095/biolreprod.110.087650</identifier><language>eng</language><publisher>Society for the Study of Reproduction, Inc</publisher><subject>follicle ; ovary ; toxicology</subject><ispartof>Biology of reproduction, 2011-04, Vol.84 (4), p.743-751</ispartof><rights>2011 by the Society for the Study of Reproduction, Inc. This is an Open Access article, freely available through Biology of Reproduction's Authors' Choice option.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1095/biolreprod.110.087650$$EPDF$$P50$$Gbioone$$H</linktopdf><link.rule.ids>314,780,784,26976,27922,27923,52361</link.rule.ids></links><search><creatorcontrib>Keating, Aileen F</creatorcontrib><creatorcontrib>Fernandez, Shannon M</creatorcontrib><creatorcontrib>Mark-Kappeler, Connie J</creatorcontrib><creatorcontrib>Sen, Nivedita</creatorcontrib><creatorcontrib>Sipes, I. Glenn</creatorcontrib><creatorcontrib>Hoyer, Patricia B</creatorcontrib><title>Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1</title><title>Biology of reproduction</title><description>4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distribution of KIT and its downstream PIK3-activated proteins, AKT and FOXO3. Postnatal Day 4 Fischer 344 rat ovaries were cultured in control media ± VCD (30 μM) for 2–8 days (d2–d8). KIT, AKT, phosphorylated AKT, FOXO3, and pFOXO3 protein levels were assessed by Western blotting and/or immunofluorescence staining with confocal microscopy. Phosphorylated AKT was decreased (P &lt; 0.05) in oocyte nuclei in primordial (39% decrease) and small primary (37% decrease) follicles within 2 days of VCD exposure. After d4, VCD reduced (P &lt; 0.05) oocyte staining for KIT (primordial, 44% decrease; small primary, 39% decrease) and FOXO3 (primordial, 40% decrease; small primary, 36% decrease) protein. Total AKT and pFOXO3 were not affected by VCD at any time. Akt1 mRNA, as measured by quantitative RT-PCR, was reduced (P &lt; 0.05) by 23% on d4 of VCD exposure, but returned to control levels on d6 and d8. VCD exposure reduced Foxo3a mRNA by 26% on d6 (P &lt; 0.05) and by 23% on d8 (P &lt; 0.1). These results demonstrate that the earliest observed effect of VCD is an inhibition of phosphorylation and nuclear localization of AKT in the oocyte of primordial and small primary follicles. This event is followed by reductions in KIT and FOXO3 protein subcellular distribution prior to changes in mRNA. Thus, these findings further support that VCD induces ovotoxicity by directly targeting the oocyte through posttranslational inhibition of KIT-mediated signaling components.</description><subject>follicle</subject><subject>ovary</subject><subject>toxicology</subject><issn>0006-3363</issn><issn>1529-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdz91KAzEQBeAgCq4_jyDMC2ydbLrb9tofLEUsKt6G7HbaHUmTJQnavL0rCt57NXCGA-cT4kriROKivm7Z20BD8JuJHDOcz5oaj0Qh62pRzqpmfiwKRGxKpRp1Ks5ifEeUU1WpQtDS9dxyYu_Ab2G9XCl44Z0zlt0O1ib1nybDI-1bChHaDKknePrwyR-4My7BtHxjl22XO-t7OpAjuGUaxveGgB08mxTlhTjZGhvp8veeC3V_93rzUI7TvSM9BN6bkLVE_S3SfyI9ivSPSP2v9QWHlFm5</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Keating, Aileen F</creator><creator>Fernandez, Shannon M</creator><creator>Mark-Kappeler, Connie J</creator><creator>Sen, Nivedita</creator><creator>Sipes, I. Glenn</creator><creator>Hoyer, Patricia B</creator><general>Society for the Study of Reproduction, Inc</general><scope/></search><sort><creationdate>201104</creationdate><title>Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1</title><author>Keating, Aileen F ; Fernandez, Shannon M ; Mark-Kappeler, Connie J ; Sen, Nivedita ; Sipes, I. Glenn ; Hoyer, Patricia B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-bioone_primary_10_1095_biolreprod_110_0876503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>follicle</topic><topic>ovary</topic><topic>toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keating, Aileen F</creatorcontrib><creatorcontrib>Fernandez, Shannon M</creatorcontrib><creatorcontrib>Mark-Kappeler, Connie J</creatorcontrib><creatorcontrib>Sen, Nivedita</creatorcontrib><creatorcontrib>Sipes, I. Glenn</creatorcontrib><creatorcontrib>Hoyer, Patricia B</creatorcontrib><jtitle>Biology of reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keating, Aileen F</au><au>Fernandez, Shannon M</au><au>Mark-Kappeler, Connie J</au><au>Sen, Nivedita</au><au>Sipes, I. Glenn</au><au>Hoyer, Patricia B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1</atitle><jtitle>Biology of reproduction</jtitle><date>2011-04</date><risdate>2011</risdate><volume>84</volume><issue>4</issue><spage>743</spage><epage>751</epage><pages>743-751</pages><issn>0006-3363</issn><eissn>1529-7268</eissn><abstract>4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distribution of KIT and its downstream PIK3-activated proteins, AKT and FOXO3. Postnatal Day 4 Fischer 344 rat ovaries were cultured in control media ± VCD (30 μM) for 2–8 days (d2–d8). KIT, AKT, phosphorylated AKT, FOXO3, and pFOXO3 protein levels were assessed by Western blotting and/or immunofluorescence staining with confocal microscopy. Phosphorylated AKT was decreased (P &lt; 0.05) in oocyte nuclei in primordial (39% decrease) and small primary (37% decrease) follicles within 2 days of VCD exposure. After d4, VCD reduced (P &lt; 0.05) oocyte staining for KIT (primordial, 44% decrease; small primary, 39% decrease) and FOXO3 (primordial, 40% decrease; small primary, 36% decrease) protein. Total AKT and pFOXO3 were not affected by VCD at any time. Akt1 mRNA, as measured by quantitative RT-PCR, was reduced (P &lt; 0.05) by 23% on d4 of VCD exposure, but returned to control levels on d6 and d8. VCD exposure reduced Foxo3a mRNA by 26% on d6 (P &lt; 0.05) and by 23% on d8 (P &lt; 0.1). These results demonstrate that the earliest observed effect of VCD is an inhibition of phosphorylation and nuclear localization of AKT in the oocyte of primordial and small primary follicles. This event is followed by reductions in KIT and FOXO3 protein subcellular distribution prior to changes in mRNA. Thus, these findings further support that VCD induces ovotoxicity by directly targeting the oocyte through posttranslational inhibition of KIT-mediated signaling components.</abstract><pub>Society for the Study of Reproduction, Inc</pub><doi>10.1095/biolreprod.110.087650</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3363
ispartof Biology of reproduction, 2011-04, Vol.84 (4), p.743-751
issn 0006-3363
1529-7268
language eng
recordid cdi_bioone_primary_10_1095_biolreprod_110_087650
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; BioOne Complete; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects follicle
ovary
toxicology
title Inhibition of PIK3 Signaling Pathway Members by the Ovotoxicant 4-Vinylcyclohexene Diepoxide in Rats1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bioone&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20PIK3%20Signaling%20Pathway%20Members%20by%20the%20Ovotoxicant%204-Vinylcyclohexene%20Diepoxide%20in%20Rats1&rft.jtitle=Biology%20of%20reproduction&rft.au=Keating,%20Aileen%20F&rft.date=2011-04&rft.volume=84&rft.issue=4&rft.spage=743&rft.epage=751&rft.pages=743-751&rft.issn=0006-3363&rft.eissn=1529-7268&rft_id=info:doi/10.1095/biolreprod.110.087650&rft_dat=%3Cbioone%3Ebioone_primary_10_1095_biolreprod_110_087650%3C/bioone%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true