BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT

The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the msr of its complement. It is shown that when the msr of a graph is equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Linear Algebra 2018-09, Vol.34 (1)
Hauptverfasser: Narayan, Sivaram, Sharawi, Yousra
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Electronic Journal of Linear Algebra
container_volume 34
creator Narayan, Sivaram
Sharawi, Yousra
description The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the msr of its complement. It is shown that when the msr of a graph is equal to its independence number, the graph complement conjecture holds with a better upper bound. Several sufficient conditions are provided for the msr of different classes of graphs to equal to its independence number.
doi_str_mv 10.13001/1081-3810,1537-9582.3539
format Article
fullrecord <record><control><sourceid>bepress</sourceid><recordid>TN_cdi_bepress_primary_ela3539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ela3539</sourcerecordid><originalsourceid>FETCH-bepress_primary_ela35393</originalsourceid><addsrcrecordid>eNqFjk8LgjAchkcQZH--Qvy6p20uSY-mM0duE51nMTAoDMSd-vYpRNdO7_PyvIcXoR3BDqEYkwPBPrGpT_CeePRkB57vOtSjwQxZP7VAS2OeGLv46HsWys6qknEJSoJOGZSVAJWA4JKLEUsmeMySsWkGRSivkwzhUoR5CqGMgesSIiXyjAkm9RrN701n2s03V2ibMB2l9q3th9aYuh8er2Z4123XTL_o38EH8mg5Sg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Narayan, Sivaram ; Sharawi, Yousra</creator><creatorcontrib>Narayan, Sivaram ; Sharawi, Yousra</creatorcontrib><description>The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the msr of its complement. It is shown that when the msr of a graph is equal to its independence number, the graph complement conjecture holds with a better upper bound. Several sufficient conditions are provided for the msr of different classes of graphs to equal to its independence number.</description><identifier>EISSN: 1081-3810</identifier><identifier>DOI: 10.13001/1081-3810,1537-9582.3539</identifier><publisher>University of Wyoming</publisher><ispartof>Electronic Journal of Linear Algebra, 2018-09, Vol.34 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Narayan, Sivaram</creatorcontrib><creatorcontrib>Sharawi, Yousra</creatorcontrib><title>BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT</title><title>Electronic Journal of Linear Algebra</title><description>The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the msr of its complement. It is shown that when the msr of a graph is equal to its independence number, the graph complement conjecture holds with a better upper bound. Several sufficient conditions are provided for the msr of different classes of graphs to equal to its independence number.</description><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjk8LgjAchkcQZH--Qvy6p20uSY-mM0duE51nMTAoDMSd-vYpRNdO7_PyvIcXoR3BDqEYkwPBPrGpT_CeePRkB57vOtSjwQxZP7VAS2OeGLv46HsWys6qknEJSoJOGZSVAJWA4JKLEUsmeMySsWkGRSivkwzhUoR5CqGMgesSIiXyjAkm9RrN701n2s03V2ibMB2l9q3th9aYuh8er2Z4123XTL_o38EH8mg5Sg</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Narayan, Sivaram</creator><creator>Sharawi, Yousra</creator><general>University of Wyoming</general><scope/></search><sort><creationdate>20180926</creationdate><title>BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT</title><author>Narayan, Sivaram ; Sharawi, Yousra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-bepress_primary_ela35393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Sivaram</creatorcontrib><creatorcontrib>Sharawi, Yousra</creatorcontrib><jtitle>Electronic Journal of Linear Algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayan, Sivaram</au><au>Sharawi, Yousra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT</atitle><jtitle>Electronic Journal of Linear Algebra</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><eissn>1081-3810</eissn><abstract>The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the msr of its complement. It is shown that when the msr of a graph is equal to its independence number, the graph complement conjecture holds with a better upper bound. Several sufficient conditions are provided for the msr of different classes of graphs to equal to its independence number.</abstract><pub>University of Wyoming</pub><doi>10.13001/1081-3810,1537-9582.3539</doi></addata></record>
fulltext fulltext
identifier EISSN: 1081-3810
ispartof Electronic Journal of Linear Algebra, 2018-09, Vol.34 (1)
issn 1081-3810
language
recordid cdi_bepress_primary_ela3539
source EZB-FREE-00999 freely available EZB journals
title BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK OF A GRAPH AND ITS COMPLEMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bepress&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOUNDS%20ON%20THE%20SUM%20OF%20MINIMUM%20SEMIDEFINITE%20RANK%20OF%20A%20GRAPH%20AND%20ITS%20COMPLEMENT&rft.jtitle=Electronic%20Journal%20of%20Linear%20Algebra&rft.au=Narayan,%20Sivaram&rft.date=2018-09-26&rft.volume=34&rft.issue=1&rft.eissn=1081-3810&rft_id=info:doi/10.13001/1081-3810,1537-9582.3539&rft_dat=%3Cbepress%3Eela3539%3C/bepress%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true