Some matrix mean inequalities with Kantorovich constant
Let $0 \begin{eqnarray*} \Phi^2(A\sigma B) & \le & K^2(h)\Phi^2(A\tau B),\\ \Phi^2(A\sigma B) & \le & K^2(h)\left(\Phi(A)\tau \Phi(B)\right)^2,\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h)\Phi^2(A\tau B),\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h) (\Phi(A)\tau \Phi(B))^2,...
Gespeichert in:
Veröffentlicht in: | Electronic Journal of Linear Algebra 2014-11, Vol.27 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Electronic Journal of Linear Algebra |
container_volume | 27 |
creator | Thi Hoa Binh, Du Trung Hoa, Dinh Minh Toan, Ho |
description | Let $0 \begin{eqnarray*} \Phi^2(A\sigma B) & \le & K^2(h)\Phi^2(A\tau B),\\ \Phi^2(A\sigma B) & \le & K^2(h)\left(\Phi(A)\tau \Phi(B)\right)^2,\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h)\Phi^2(A\tau B),\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h) (\Phi(A)\tau \Phi(B))^2, \end{eqnarray*} where $K(h)=\dfrac{(h+1)^2}{4h}$ and $h=\dfrac{M}{m}$ is the Kantorovich constant |
format | Article |
fullrecord | <record><control><sourceid>bepress</sourceid><recordid>TN_cdi_bepress_primary_ela2799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ela2799</sourcerecordid><originalsourceid>FETCH-bepress_primary_ela27993</originalsourceid><addsrcrecordid>eNpjYuA0NLAw1DW2MDTgYOAqLs4yMDAyMLEw5WQwD87PTVXITSwpyqxQyE1NzFPIzEstLE3MySzJTC1WKM8syVDwTswryS_KL8tMzlBIzs8rLgHyeRhY0xJzilN5oTQ3g5yba4izh25SakFRanFxfEFRZm5iUWV8ak6ikbmlpTFBBQDdcjO-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some matrix mean inequalities with Kantorovich constant</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Thi Hoa Binh, Du ; Trung Hoa, Dinh ; Minh Toan, Ho</creator><creatorcontrib>Thi Hoa Binh, Du ; Trung Hoa, Dinh ; Minh Toan, Ho</creatorcontrib><description><![CDATA[Let $0 \begin{eqnarray*} \Phi^2(A\sigma B) & \le & K^2(h)\Phi^2(A\tau B),\\ \Phi^2(A\sigma B) & \le & K^2(h)\left(\Phi(A)\tau \Phi(B)\right)^2,\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h)\Phi^2(A\tau B),\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h) (\Phi(A)\tau \Phi(B))^2, \end{eqnarray*} where $K(h)=\dfrac{(h+1)^2}{4h}$ and $h=\dfrac{M}{m}$ is the Kantorovich constant]]></description><identifier>EISSN: 1081-3810</identifier><publisher>University of Wyoming</publisher><ispartof>Electronic Journal of Linear Algebra, 2014-11, Vol.27 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Thi Hoa Binh, Du</creatorcontrib><creatorcontrib>Trung Hoa, Dinh</creatorcontrib><creatorcontrib>Minh Toan, Ho</creatorcontrib><title>Some matrix mean inequalities with Kantorovich constant</title><title>Electronic Journal of Linear Algebra</title><description><![CDATA[Let $0 \begin{eqnarray*} \Phi^2(A\sigma B) & \le & K^2(h)\Phi^2(A\tau B),\\ \Phi^2(A\sigma B) & \le & K^2(h)\left(\Phi(A)\tau \Phi(B)\right)^2,\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h)\Phi^2(A\tau B),\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h) (\Phi(A)\tau \Phi(B))^2, \end{eqnarray*} where $K(h)=\dfrac{(h+1)^2}{4h}$ and $h=\dfrac{M}{m}$ is the Kantorovich constant]]></description><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLAw1DW2MDTgYOAqLs4yMDAyMLEw5WQwD87PTVXITSwpyqxQyE1NzFPIzEstLE3MySzJTC1WKM8syVDwTswryS_KL8tMzlBIzs8rLgHyeRhY0xJzilN5oTQ3g5yba4izh25SakFRanFxfEFRZm5iUWV8ak6ikbmlpTFBBQDdcjO-</recordid><startdate>20141127</startdate><enddate>20141127</enddate><creator>Thi Hoa Binh, Du</creator><creator>Trung Hoa, Dinh</creator><creator>Minh Toan, Ho</creator><general>University of Wyoming</general><scope/></search><sort><creationdate>20141127</creationdate><title>Some matrix mean inequalities with Kantorovich constant</title><author>Thi Hoa Binh, Du ; Trung Hoa, Dinh ; Minh Toan, Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-bepress_primary_ela27993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Thi Hoa Binh, Du</creatorcontrib><creatorcontrib>Trung Hoa, Dinh</creatorcontrib><creatorcontrib>Minh Toan, Ho</creatorcontrib><jtitle>Electronic Journal of Linear Algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thi Hoa Binh, Du</au><au>Trung Hoa, Dinh</au><au>Minh Toan, Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some matrix mean inequalities with Kantorovich constant</atitle><jtitle>Electronic Journal of Linear Algebra</jtitle><date>2014-11-27</date><risdate>2014</risdate><volume>27</volume><issue>1</issue><eissn>1081-3810</eissn><abstract><![CDATA[Let $0 \begin{eqnarray*} \Phi^2(A\sigma B) & \le & K^2(h)\Phi^2(A\tau B),\\ \Phi^2(A\sigma B) & \le & K^2(h)\left(\Phi(A)\tau \Phi(B)\right)^2,\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h)\Phi^2(A\tau B),\\ (\Phi(A)\sigma\Phi(B))^2 & \le & K^2(h) (\Phi(A)\tau \Phi(B))^2, \end{eqnarray*} where $K(h)=\dfrac{(h+1)^2}{4h}$ and $h=\dfrac{M}{m}$ is the Kantorovich constant]]></abstract><pub>University of Wyoming</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1081-3810 |
ispartof | Electronic Journal of Linear Algebra, 2014-11, Vol.27 (1) |
issn | 1081-3810 |
language | |
recordid | cdi_bepress_primary_ela2799 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Some matrix mean inequalities with Kantorovich constant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bepress&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20matrix%20mean%20inequalities%20with%20Kantorovich%20constant&rft.jtitle=Electronic%20Journal%20of%20Linear%20Algebra&rft.au=Thi%20Hoa%20Binh,%20Du&rft.date=2014-11-27&rft.volume=27&rft.issue=1&rft.eissn=1081-3810&rft_id=info:doi/&rft_dat=%3Cbepress%3Eela2799%3C/bepress%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |