Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification
12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Salvatore A. Sarcia Giovanni Cantone Victor R. Basili |
description | 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - . |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>bcs</sourceid><recordid>TN_cdi_bcs_primary_19550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19550</sourcerecordid><originalsourceid>FETCH-bcs_primary_195503</originalsourceid><addsrcrecordid>eNp9TcEKwjAUK4KgqHeP7wMmTOaYHseY6MGT4lWeXSeVri3tm9rf8Ist6NlASCAJGbDxclUUi02Wr0ds5v09jVgX6SorxuxdNsaS1DeoeveQSmqBDirTWaOFJig1quClBzKw76wzDwFH09ITnYg1T1B7kh2SNBpKznuHPMDBNEIlUFqrJP9mR3JI4hYSQN1EQv2ywskunqCCc7TtrzplwxaVF7OfTth8W5-q3eLK_cXGCbpwWW7yPM3-RB-LJlB2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><source>Alma/SFX Local Collection</source><creator>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</creator><creatorcontrib>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</creatorcontrib><description>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</description><identifier>EISSN: 1477-9358</identifier><language>eng</language><publisher>BCS, The Chartered Institute for IT</publisher><subject>COCOMO ; prediction models ; software economics</subject><ispartof>Electronic workshops in computing (Online), 2008</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,4036,4037,23911,23912,25120</link.rule.ids></links><search><creatorcontrib>Salvatore A. Sarcia</creatorcontrib><creatorcontrib>Giovanni Cantone</creatorcontrib><creatorcontrib>Victor R. Basili</creatorcontrib><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><title>Electronic workshops in computing (Online)</title><description>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</description><subject>COCOMO</subject><subject>prediction models</subject><subject>software economics</subject><issn>1477-9358</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9TcEKwjAUK4KgqHeP7wMmTOaYHseY6MGT4lWeXSeVri3tm9rf8Ist6NlASCAJGbDxclUUi02Wr0ds5v09jVgX6SorxuxdNsaS1DeoeveQSmqBDirTWaOFJig1quClBzKw76wzDwFH09ITnYg1T1B7kh2SNBpKznuHPMDBNEIlUFqrJP9mR3JI4hYSQN1EQv2ywskunqCCc7TtrzplwxaVF7OfTth8W5-q3eLK_cXGCbpwWW7yPM3-RB-LJlB2</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Salvatore A. Sarcia</creator><creator>Giovanni Cantone</creator><creator>Victor R. Basili</creator><general>BCS, The Chartered Institute for IT</general><scope>.90</scope></search><sort><creationdate>2008</creationdate><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><author>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-bcs_primary_195503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>COCOMO</topic><topic>prediction models</topic><topic>software economics</topic><toplevel>online_resources</toplevel><creatorcontrib>Salvatore A. Sarcia</creatorcontrib><creatorcontrib>Giovanni Cantone</creatorcontrib><creatorcontrib>Victor R. Basili</creatorcontrib><collection>eWIC Workshops in Computing</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvatore A. Sarcia</au><au>Giovanni Cantone</au><au>Victor R. Basili</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</atitle><btitle>Electronic workshops in computing (Online)</btitle><date>2008</date><risdate>2008</risdate><eissn>1477-9358</eissn><abstract>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</abstract><pub>BCS, The Chartered Institute for IT</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1477-9358 |
ispartof | Electronic workshops in computing (Online), 2008 |
issn | 1477-9358 |
language | eng |
recordid | cdi_bcs_primary_19550 |
source | Alma/SFX Local Collection |
subjects | COCOMO prediction models software economics |
title | Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bcs&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adopting%20Curvilinear%20Component%20Analysis%20to%20Improve%20Software%20Cost%20Estimation%20Accuracy%20Model,%20Application%20Strategy,%20and%20an%20Experimental%20Verification&rft.btitle=Electronic%20workshops%20in%20computing%20(Online)&rft.au=Salvatore%20A.%20Sarcia&rft.date=2008&rft.eissn=1477-9358&rft_id=info:doi/&rft_dat=%3Cbcs%3E19550%3C/bcs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |