Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification

12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salvatore A. Sarcia, Giovanni Cantone, Victor R. Basili
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Salvatore A. Sarcia
Giovanni Cantone
Victor R. Basili
description 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .
format Conference Proceeding
fullrecord <record><control><sourceid>bcs</sourceid><recordid>TN_cdi_bcs_primary_19550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19550</sourcerecordid><originalsourceid>FETCH-bcs_primary_195503</originalsourceid><addsrcrecordid>eNp9TcEKwjAUK4KgqHeP7wMmTOaYHseY6MGT4lWeXSeVri3tm9rf8Ist6NlASCAJGbDxclUUi02Wr0ds5v09jVgX6SorxuxdNsaS1DeoeveQSmqBDirTWaOFJig1quClBzKw76wzDwFH09ITnYg1T1B7kh2SNBpKznuHPMDBNEIlUFqrJP9mR3JI4hYSQN1EQv2ywskunqCCc7TtrzplwxaVF7OfTth8W5-q3eLK_cXGCbpwWW7yPM3-RB-LJlB2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><source>Alma/SFX Local Collection</source><creator>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</creator><creatorcontrib>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</creatorcontrib><description>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</description><identifier>EISSN: 1477-9358</identifier><language>eng</language><publisher>BCS, The Chartered Institute for IT</publisher><subject>COCOMO ; prediction models ; software economics</subject><ispartof>Electronic workshops in computing (Online), 2008</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,4036,4037,23911,23912,25120</link.rule.ids></links><search><creatorcontrib>Salvatore A. Sarcia</creatorcontrib><creatorcontrib>Giovanni Cantone</creatorcontrib><creatorcontrib>Victor R. Basili</creatorcontrib><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><title>Electronic workshops in computing (Online)</title><description>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</description><subject>COCOMO</subject><subject>prediction models</subject><subject>software economics</subject><issn>1477-9358</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9TcEKwjAUK4KgqHeP7wMmTOaYHseY6MGT4lWeXSeVri3tm9rf8Ist6NlASCAJGbDxclUUi02Wr0ds5v09jVgX6SorxuxdNsaS1DeoeveQSmqBDirTWaOFJig1quClBzKw76wzDwFH09ITnYg1T1B7kh2SNBpKznuHPMDBNEIlUFqrJP9mR3JI4hYSQN1EQv2ywskunqCCc7TtrzplwxaVF7OfTth8W5-q3eLK_cXGCbpwWW7yPM3-RB-LJlB2</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Salvatore A. Sarcia</creator><creator>Giovanni Cantone</creator><creator>Victor R. Basili</creator><general>BCS, The Chartered Institute for IT</general><scope>.90</scope></search><sort><creationdate>2008</creationdate><title>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</title><author>Salvatore A. Sarcia ; Giovanni Cantone ; Victor R. Basili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-bcs_primary_195503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>COCOMO</topic><topic>prediction models</topic><topic>software economics</topic><toplevel>online_resources</toplevel><creatorcontrib>Salvatore A. Sarcia</creatorcontrib><creatorcontrib>Giovanni Cantone</creatorcontrib><creatorcontrib>Victor R. Basili</creatorcontrib><collection>eWIC Workshops in Computing</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvatore A. Sarcia</au><au>Giovanni Cantone</au><au>Victor R. Basili</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification</atitle><btitle>Electronic workshops in computing (Online)</btitle><date>2008</date><risdate>2008</risdate><eissn>1477-9358</eissn><abstract>12th International Conference on Evaluation and Assessment in Software Engineering (EASE) - Salvatore A. Sarcia, Giovanni Cantone and Victor R. Basili - Cost estimation is a critical issue for software organizations. Good estimates can help us make more informed decisions (controlling and planning software risks), if they are reliable (correct) and valid (stable). In this study, we apply a variable reduction technique (based on auto-associative feed--forward neural networks - called Curvilinear component analysis) to log-linear regression functions calibrated with ordinary least squares. Based on a COCOMO 81 data set, we show that Curvilinear component analysis can improve the estimation model accuracy by turning the initial input variables into an equivalent and more compact representation. We show that, the models obtained by applying Curvilinear component analysis are more parsimonious, correct, and reliable. - Our website uses cookies to help improve your experience. Find out more by reading our - .</abstract><pub>BCS, The Chartered Institute for IT</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1477-9358
ispartof Electronic workshops in computing (Online), 2008
issn 1477-9358
language eng
recordid cdi_bcs_primary_19550
source Alma/SFX Local Collection
subjects COCOMO
prediction models
software economics
title Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy Model, Application Strategy, and an Experimental Verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bcs&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adopting%20Curvilinear%20Component%20Analysis%20to%20Improve%20Software%20Cost%20Estimation%20Accuracy%20Model,%20Application%20Strategy,%20and%20an%20Experimental%20Verification&rft.btitle=Electronic%20workshops%20in%20computing%20(Online)&rft.au=Salvatore%20A.%20Sarcia&rft.date=2008&rft.eissn=1477-9358&rft_id=info:doi/&rft_dat=%3Cbcs%3E19550%3C/bcs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true