In-Phase Crossover Network Design

Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley square...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Audio Engineering Society 1986-11, Vol.34 (11), p.889-894
Hauptverfasser: Lipshitz, Stanley P, Vanderkooy, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 11
container_start_page 889
container_title Journal of the Audio Engineering Society
container_volume 34
creator Lipshitz, Stanley P
Vanderkooy, John
description Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system's output then shows no tilt through the crossover region. It is shown that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (that is, rolloff) parameters against phase response (that is, group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the author's delay-derived crossover configuration.
format Article
fullrecord <record><control><sourceid>audioengineering_FGG</sourceid><recordid>TN_cdi_audioengineering_primary_5237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5237</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-2efc846d7080459615235225637d4f8345947c1eb4c81cbb4159b480896bf8bf3</originalsourceid><addsrcrecordid>eNpFjUtLAzEURrNQsFb_wwhuB_K4N5MsZXwVirpo1yXJ3IzRmilJVfz3FhRdHfg4fOeIzQSCbcEiP2Gntb5wLjUCztjFIrdPz65S05ep1umDSvNA-8-pvDbXVNOYz9hxdNtK57-cs_Xtzaq_b5ePd4v-atk6KcS-lRSDAT103HBAqwVKhVKiVt0A0ajDBl0Q5CEYEbwHgdaD4cZqH42Pas4uf353rga3jcXlkOpmV9KbK18bw1EJA_-aex_SRHlMmaikPP6Zh3CnvgEfGEVb</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-Phase Crossover Network Design</title><source>AES Electronic Library</source><creator>Lipshitz, Stanley P ; Vanderkooy, John</creator><creatorcontrib>Lipshitz, Stanley P ; Vanderkooy, John</creatorcontrib><description>Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system's output then shows no tilt through the crossover region. It is shown that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (that is, rolloff) parameters against phase response (that is, group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the author's delay-derived crossover configuration.</description><identifier>ISSN: 1549-4950</identifier><identifier>ISSN: 0004-7554</identifier><identifier>CODEN: ADIOA3</identifier><language>eng</language><publisher>New York, NY: Audio Engineering Society</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Transduction; acoustical devices for the generation and reproduction of sound</subject><ispartof>Journal of the Audio Engineering Society, 1986-11, Vol.34 (11), p.889-894</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,9935</link.rule.ids><linktorsrc>$$Uhttps://aes2.org/publications/elibrary-page/?id=5237$$EView_record_in_Audio_Engineering_Society$$FView_record_in_$$GAudio_Engineering_Society</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8053184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipshitz, Stanley P</creatorcontrib><creatorcontrib>Vanderkooy, John</creatorcontrib><title>In-Phase Crossover Network Design</title><title>Journal of the Audio Engineering Society</title><description>Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system's output then shows no tilt through the crossover region. It is shown that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (that is, rolloff) parameters against phase response (that is, group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the author's delay-derived crossover configuration.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><issn>1549-4950</issn><issn>0004-7554</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>FGG</sourceid><recordid>eNpFjUtLAzEURrNQsFb_wwhuB_K4N5MsZXwVirpo1yXJ3IzRmilJVfz3FhRdHfg4fOeIzQSCbcEiP2Gntb5wLjUCztjFIrdPz65S05ep1umDSvNA-8-pvDbXVNOYz9hxdNtK57-cs_Xtzaq_b5ePd4v-atk6KcS-lRSDAT103HBAqwVKhVKiVt0A0ajDBl0Q5CEYEbwHgdaD4cZqH42Pas4uf353rga3jcXlkOpmV9KbK18bw1EJA_-aex_SRHlMmaikPP6Zh3CnvgEfGEVb</recordid><startdate>19861101</startdate><enddate>19861101</enddate><creator>Lipshitz, Stanley P</creator><creator>Vanderkooy, John</creator><general>Audio Engineering Society</general><scope>FGG</scope><scope>IQODW</scope></search><sort><creationdate>19861101</creationdate><title>In-Phase Crossover Network Design</title><author>Lipshitz, Stanley P ; Vanderkooy, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-2efc846d7080459615235225637d4f8345947c1eb4c81cbb4159b480896bf8bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipshitz, Stanley P</creatorcontrib><creatorcontrib>Vanderkooy, John</creatorcontrib><collection>AES Electronic Library</collection><collection>Pascal-Francis</collection><jtitle>Journal of the Audio Engineering Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lipshitz, Stanley P</au><au>Vanderkooy, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Phase Crossover Network Design</atitle><jtitle>Journal of the Audio Engineering Society</jtitle><date>1986-11-01</date><risdate>1986</risdate><volume>34</volume><issue>11</issue><spage>889</spage><epage>894</epage><pages>889-894</pages><issn>1549-4950</issn><issn>0004-7554</issn><coden>ADIOA3</coden><abstract>Crossover networks whose low- and high-pass outputs sum to unity magnitude, that is, all-pass crossovers, are considered. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system's output then shows no tilt through the crossover region. It is shown that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (that is, rolloff) parameters against phase response (that is, group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the author's delay-derived crossover configuration.</abstract><cop>New York, NY</cop><pub>Audio Engineering Society</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-4950
ispartof Journal of the Audio Engineering Society, 1986-11, Vol.34 (11), p.889-894
issn 1549-4950
0004-7554
language eng
recordid cdi_audioengineering_primary_5237
source AES Electronic Library
subjects Acoustics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Transduction
acoustical devices for the generation and reproduction of sound
title In-Phase Crossover Network Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-audioengineering_FGG&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Phase%20Crossover%20Network%20Design&rft.jtitle=Journal%20of%20the%20Audio%20Engineering%20Society&rft.au=Lipshitz,%20Stanley%20P&rft.date=1986-11-01&rft.volume=34&rft.issue=11&rft.spage=889&rft.epage=894&rft.pages=889-894&rft.issn=1549-4950&rft.coden=ADIOA3&rft_id=info:doi/&rft_dat=%3Caudioengineering_FGG%3E5237%3C/audioengineering_FGG%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true