Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys
We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic met...
Gespeichert in:
Veröffentlicht in: | Journal of engineering materials and technology 2021-04, Vol.143 (2), Article 021005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of engineering materials and technology |
container_volume | 143 |
creator | Vilalta, Pau Cutrina Sheikholeslami, Somayyeh Saleme Ruiz, Katerine C. Yee, Xin Koslowski, Marisol |
description | We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress. |
doi_str_mv | 10.1115/1.4048873 |
format | Article |
fullrecord | <record><control><sourceid>asme_webof</sourceid><recordid>TN_cdi_asme_journals_1089007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1089007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</originalsourceid><addsrcrecordid>eNqNkEFLAzEQRoMoWKsH7x5yFVmdJJvd7LEsaoWKBfXgacmmkzay3ZQkRfrv3dLi2dN8A-8bhkfINYN7xph8YPc55EqV4oSMmOQqU0pVp2QEUOVZzlV1Ti5i_AZgQshyROav2qxcj3SGOvSuX1LrA50HXDiT9mtaIa2DS87ojn457Bb0PQWMkXpLp265oo99Cn6zo5Ou87t4Sc6s7iJeHeeYfD49ftTTbPb2_FJPZpnmElLWctmi5EWLKACFzTFnlkssDJO6EFULVuamVbwwXJSmbA3KnPNSgSlxoa0Yk9vDXRN8jAFtswlurcOuYdDsVTSsOaoYWHVgf7D1NhqHvcE_HgAKXrACyiGBrF3Syfm-9ts-DdW7_1cH-uZA67jG5ttvQz84GD5SFUApfgHKCHqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><source>ASME Transactions Journals (Current)</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</creator><creatorcontrib>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</creatorcontrib><description>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</description><identifier>ISSN: 0094-4289</identifier><identifier>EISSN: 1528-8889</identifier><identifier>DOI: 10.1115/1.4048873</identifier><language>eng</language><publisher>NEW YORK: ASME</publisher><subject>Engineering ; Engineering, Mechanical ; Materials Science ; Materials Science, Multidisciplinary ; Science & Technology ; Technology</subject><ispartof>Journal of engineering materials and technology, 2021-04, Vol.143 (2), Article 021005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000626160700005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</citedby><cites>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,38525,39263</link.rule.ids></links><search><creatorcontrib>Vilalta, Pau Cutrina</creatorcontrib><creatorcontrib>Sheikholeslami, Somayyeh</creatorcontrib><creatorcontrib>Saleme Ruiz, Katerine</creatorcontrib><creatorcontrib>C. Yee, Xin</creatorcontrib><creatorcontrib>Koslowski, Marisol</creatorcontrib><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><title>Journal of engineering materials and technology</title><addtitle>J. Eng. Mater. Technol</addtitle><addtitle>J ENG MATER-T ASME</addtitle><description>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</description><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0094-4289</issn><issn>1528-8889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEFLAzEQRoMoWKsH7x5yFVmdJJvd7LEsaoWKBfXgacmmkzay3ZQkRfrv3dLi2dN8A-8bhkfINYN7xph8YPc55EqV4oSMmOQqU0pVp2QEUOVZzlV1Ti5i_AZgQshyROav2qxcj3SGOvSuX1LrA50HXDiT9mtaIa2DS87ojn457Bb0PQWMkXpLp265oo99Cn6zo5Ou87t4Sc6s7iJeHeeYfD49ftTTbPb2_FJPZpnmElLWctmi5EWLKACFzTFnlkssDJO6EFULVuamVbwwXJSmbA3KnPNSgSlxoa0Yk9vDXRN8jAFtswlurcOuYdDsVTSsOaoYWHVgf7D1NhqHvcE_HgAKXrACyiGBrF3Syfm-9ts-DdW7_1cH-uZA67jG5ttvQz84GD5SFUApfgHKCHqA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vilalta, Pau Cutrina</creator><creator>Sheikholeslami, Somayyeh</creator><creator>Saleme Ruiz, Katerine</creator><creator>C. Yee, Xin</creator><creator>Koslowski, Marisol</creator><general>ASME</general><general>Asme</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><author>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilalta, Pau Cutrina</creatorcontrib><creatorcontrib>Sheikholeslami, Somayyeh</creatorcontrib><creatorcontrib>Saleme Ruiz, Katerine</creatorcontrib><creatorcontrib>C. Yee, Xin</creatorcontrib><creatorcontrib>Koslowski, Marisol</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of engineering materials and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilalta, Pau Cutrina</au><au>Sheikholeslami, Somayyeh</au><au>Saleme Ruiz, Katerine</au><au>C. Yee, Xin</au><au>Koslowski, Marisol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</atitle><jtitle>Journal of engineering materials and technology</jtitle><stitle>J. Eng. Mater. Technol</stitle><stitle>J ENG MATER-T ASME</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>143</volume><issue>2</issue><artnum>021005</artnum><issn>0094-4289</issn><eissn>1528-8889</eissn><abstract>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</abstract><cop>NEW YORK</cop><pub>ASME</pub><doi>10.1115/1.4048873</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-4289 |
ispartof | Journal of engineering materials and technology, 2021-04, Vol.143 (2), Article 021005 |
issn | 0094-4289 1528-8889 |
language | eng |
recordid | cdi_asme_journals_1089007 |
source | ASME Transactions Journals (Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Engineering Engineering, Mechanical Materials Science Materials Science, Multidisciplinary Science & Technology Technology |
title | Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Predicting%20the%20Critical%20Yield%20Stress%20of%20High%20Entropy%20Alloys&rft.jtitle=Journal%20of%20engineering%20materials%20and%20technology&rft.au=Vilalta,%20Pau%20Cutrina&rft.date=2021-04-01&rft.volume=143&rft.issue=2&rft.artnum=021005&rft.issn=0094-4289&rft.eissn=1528-8889&rft_id=info:doi/10.1115/1.4048873&rft_dat=%3Casme_webof%3E1089007%3C/asme_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |