Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys

We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering materials and technology 2021-04, Vol.143 (2), Article 021005
Hauptverfasser: Vilalta, Pau Cutrina, Sheikholeslami, Somayyeh, Saleme Ruiz, Katerine, C. Yee, Xin, Koslowski, Marisol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of engineering materials and technology
container_volume 143
creator Vilalta, Pau Cutrina
Sheikholeslami, Somayyeh
Saleme Ruiz, Katerine
C. Yee, Xin
Koslowski, Marisol
description We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.
doi_str_mv 10.1115/1.4048873
format Article
fullrecord <record><control><sourceid>asme_webof</sourceid><recordid>TN_cdi_asme_journals_1089007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1089007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</originalsourceid><addsrcrecordid>eNqNkEFLAzEQRoMoWKsH7x5yFVmdJJvd7LEsaoWKBfXgacmmkzay3ZQkRfrv3dLi2dN8A-8bhkfINYN7xph8YPc55EqV4oSMmOQqU0pVp2QEUOVZzlV1Ti5i_AZgQshyROav2qxcj3SGOvSuX1LrA50HXDiT9mtaIa2DS87ojn457Bb0PQWMkXpLp265oo99Cn6zo5Ou87t4Sc6s7iJeHeeYfD49ftTTbPb2_FJPZpnmElLWctmi5EWLKACFzTFnlkssDJO6EFULVuamVbwwXJSmbA3KnPNSgSlxoa0Yk9vDXRN8jAFtswlurcOuYdDsVTSsOaoYWHVgf7D1NhqHvcE_HgAKXrACyiGBrF3Syfm-9ts-DdW7_1cH-uZA67jG5ttvQz84GD5SFUApfgHKCHqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><source>ASME Transactions Journals (Current)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</creator><creatorcontrib>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</creatorcontrib><description>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</description><identifier>ISSN: 0094-4289</identifier><identifier>EISSN: 1528-8889</identifier><identifier>DOI: 10.1115/1.4048873</identifier><language>eng</language><publisher>NEW YORK: ASME</publisher><subject>Engineering ; Engineering, Mechanical ; Materials Science ; Materials Science, Multidisciplinary ; Science &amp; Technology ; Technology</subject><ispartof>Journal of engineering materials and technology, 2021-04, Vol.143 (2), Article 021005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000626160700005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</citedby><cites>FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,38525,39263</link.rule.ids></links><search><creatorcontrib>Vilalta, Pau Cutrina</creatorcontrib><creatorcontrib>Sheikholeslami, Somayyeh</creatorcontrib><creatorcontrib>Saleme Ruiz, Katerine</creatorcontrib><creatorcontrib>C. Yee, Xin</creatorcontrib><creatorcontrib>Koslowski, Marisol</creatorcontrib><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><title>Journal of engineering materials and technology</title><addtitle>J. Eng. Mater. Technol</addtitle><addtitle>J ENG MATER-T ASME</addtitle><description>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</description><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0094-4289</issn><issn>1528-8889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEFLAzEQRoMoWKsH7x5yFVmdJJvd7LEsaoWKBfXgacmmkzay3ZQkRfrv3dLi2dN8A-8bhkfINYN7xph8YPc55EqV4oSMmOQqU0pVp2QEUOVZzlV1Ti5i_AZgQshyROav2qxcj3SGOvSuX1LrA50HXDiT9mtaIa2DS87ojn457Bb0PQWMkXpLp265oo99Cn6zo5Ou87t4Sc6s7iJeHeeYfD49ftTTbPb2_FJPZpnmElLWctmi5EWLKACFzTFnlkssDJO6EFULVuamVbwwXJSmbA3KnPNSgSlxoa0Yk9vDXRN8jAFtswlurcOuYdDsVTSsOaoYWHVgf7D1NhqHvcE_HgAKXrACyiGBrF3Syfm-9ts-DdW7_1cH-uZA67jG5ttvQz84GD5SFUApfgHKCHqA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vilalta, Pau Cutrina</creator><creator>Sheikholeslami, Somayyeh</creator><creator>Saleme Ruiz, Katerine</creator><creator>C. Yee, Xin</creator><creator>Koslowski, Marisol</creator><general>ASME</general><general>Asme</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</title><author>Vilalta, Pau Cutrina ; Sheikholeslami, Somayyeh ; Saleme Ruiz, Katerine ; C. Yee, Xin ; Koslowski, Marisol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-b25be526bee30e3f4e41f25e6c15a639b0f54cb826c237c7bce5422780c7edaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilalta, Pau Cutrina</creatorcontrib><creatorcontrib>Sheikholeslami, Somayyeh</creatorcontrib><creatorcontrib>Saleme Ruiz, Katerine</creatorcontrib><creatorcontrib>C. Yee, Xin</creatorcontrib><creatorcontrib>Koslowski, Marisol</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of engineering materials and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilalta, Pau Cutrina</au><au>Sheikholeslami, Somayyeh</au><au>Saleme Ruiz, Katerine</au><au>C. Yee, Xin</au><au>Koslowski, Marisol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys</atitle><jtitle>Journal of engineering materials and technology</jtitle><stitle>J. Eng. Mater. Technol</stitle><stitle>J ENG MATER-T ASME</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>143</volume><issue>2</issue><artnum>021005</artnum><issn>0094-4289</issn><eissn>1528-8889</eissn><abstract>We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.</abstract><cop>NEW YORK</cop><pub>ASME</pub><doi>10.1115/1.4048873</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-4289
ispartof Journal of engineering materials and technology, 2021-04, Vol.143 (2), Article 021005
issn 0094-4289
1528-8889
language eng
recordid cdi_asme_journals_1089007
source ASME Transactions Journals (Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Engineering
Engineering, Mechanical
Materials Science
Materials Science, Multidisciplinary
Science & Technology
Technology
title Machine Learning for Predicting the Critical Yield Stress of High Entropy Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Predicting%20the%20Critical%20Yield%20Stress%20of%20High%20Entropy%20Alloys&rft.jtitle=Journal%20of%20engineering%20materials%20and%20technology&rft.au=Vilalta,%20Pau%20Cutrina&rft.date=2021-04-01&rft.volume=143&rft.issue=2&rft.artnum=021005&rft.issn=0094-4289&rft.eissn=1528-8889&rft_id=info:doi/10.1115/1.4048873&rft_dat=%3Casme_webof%3E1089007%3C/asme_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true