Linear Algebra with Python: Theory and Applications

This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsukada, Makoto, Kobayashi, Yuji, Kaneko, Hiroshi, Takahasi, Sin-Ei, Shirayanagi, Kiyoshi, Noguchi, Masato
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tsukada, Makoto
Kobayashi, Yuji
Kaneko, Hiroshi
Takahasi, Sin-Ei
Shirayanagi, Kiyoshi
Noguchi, Masato
description This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron-Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python's libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.
doi_str_mv 10.1007/978-981-99-2951-1
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9789819929511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31001788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a10015-e6250f3823c12a2cf62bc88f57771676f36615892186073d7603eec0de7586423</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhM1TlNIfAKce4WC6a8evY6nKQ6oEB8TVclKnjRolJQ6t-PfEBCH1tNLsN6uZJeQa4R4B1MQoTY1GagxlRiDFIzLqtE4yJgp4TAaopaJCYHJysIPk9H8H8pxcYoJCG2lAXJBRCEUKggsQJlEDcrMoKu-a8bRc-bRx433Rrsdv3-26rq7IWe7K4Ed_c0g-Hufvs2e6eH16mU0X1HVJUVAvmYCca8YzZI5luWRppnUulFIolcy5lDEA6zKB4kslgXufwdIroWXC-JDc9Ydd2Ph9WNdlG-yu9Gldb4I9aN2xk54N26aoVr6xPYVg498ibTvcGmOjwUbHbe_YNvXnlw-t_T2c-aptXGnnDzMeeyit-Q8chGG9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC31001788</pqid></control><display><type>book</type><title>Linear Algebra with Python: Theory and Applications</title><source>Springer Books</source><creator>Tsukada, Makoto ; Kobayashi, Yuji ; Kaneko, Hiroshi ; Takahasi, Sin-Ei ; Shirayanagi, Kiyoshi ; Noguchi, Masato</creator><creatorcontrib>Tsukada, Makoto ; Kobayashi, Yuji ; Kaneko, Hiroshi ; Takahasi, Sin-Ei ; Shirayanagi, Kiyoshi ; Noguchi, Masato</creatorcontrib><description>This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron-Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python's libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.</description><edition>1</edition><identifier>ISSN: 1867-5506</identifier><identifier>ISBN: 9789819929504</identifier><identifier>ISBN: 9819929504</identifier><identifier>EISSN: 1867-5514</identifier><identifier>EISBN: 9789819929511</identifier><identifier>EISBN: 9819929512</identifier><identifier>DOI: 10.1007/978-981-99-2951-1</identifier><identifier>OCLC: 1415896905</identifier><language>eng</language><publisher>Singapore: Springer</publisher><subject>Algebras, Linear ; Functional Analysis ; Linear Algebra ; Mathematics ; Mathematics and Statistics ; Python ; Python (Computer program language)</subject><creationdate>2023</creationdate><tpages>315</tpages><format>315</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Undergraduate Texts in Mathematics and Technology</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-981-99-2951-1</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-99-2951-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27903,38233,42489</link.rule.ids></links><search><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Kaneko, Hiroshi</creatorcontrib><creatorcontrib>Takahasi, Sin-Ei</creatorcontrib><creatorcontrib>Shirayanagi, Kiyoshi</creatorcontrib><creatorcontrib>Noguchi, Masato</creatorcontrib><title>Linear Algebra with Python: Theory and Applications</title><description>This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron-Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python's libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.</description><subject>Algebras, Linear</subject><subject>Functional Analysis</subject><subject>Linear Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Python</subject><subject>Python (Computer program language)</subject><issn>1867-5506</issn><issn>1867-5514</issn><isbn>9789819929504</isbn><isbn>9819929504</isbn><isbn>9789819929511</isbn><isbn>9819929512</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkEtPwzAQhM1TlNIfAKce4WC6a8evY6nKQ6oEB8TVclKnjRolJQ6t-PfEBCH1tNLsN6uZJeQa4R4B1MQoTY1GagxlRiDFIzLqtE4yJgp4TAaopaJCYHJysIPk9H8H8pxcYoJCG2lAXJBRCEUKggsQJlEDcrMoKu-a8bRc-bRx433Rrsdv3-26rq7IWe7K4Ed_c0g-Hufvs2e6eH16mU0X1HVJUVAvmYCca8YzZI5luWRppnUulFIolcy5lDEA6zKB4kslgXufwdIroWXC-JDc9Ydd2Ph9WNdlG-yu9Gldb4I9aN2xk54N26aoVr6xPYVg498ibTvcGmOjwUbHbe_YNvXnlw-t_T2c-aptXGnnDzMeeyit-Q8chGG9</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tsukada, Makoto</creator><creator>Kobayashi, Yuji</creator><creator>Kaneko, Hiroshi</creator><creator>Takahasi, Sin-Ei</creator><creator>Shirayanagi, Kiyoshi</creator><creator>Noguchi, Masato</creator><general>Springer</general><general>Springer Nature Singapore</general><scope/></search><sort><creationdate>2023</creationdate><title>Linear Algebra with Python</title><author>Tsukada, Makoto ; Kobayashi, Yuji ; Kaneko, Hiroshi ; Takahasi, Sin-Ei ; Shirayanagi, Kiyoshi ; Noguchi, Masato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a10015-e6250f3823c12a2cf62bc88f57771676f36615892186073d7603eec0de7586423</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebras, Linear</topic><topic>Functional Analysis</topic><topic>Linear Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Python</topic><topic>Python (Computer program language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Kaneko, Hiroshi</creatorcontrib><creatorcontrib>Takahasi, Sin-Ei</creatorcontrib><creatorcontrib>Shirayanagi, Kiyoshi</creatorcontrib><creatorcontrib>Noguchi, Masato</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsukada, Makoto</au><au>Kobayashi, Yuji</au><au>Kaneko, Hiroshi</au><au>Takahasi, Sin-Ei</au><au>Shirayanagi, Kiyoshi</au><au>Noguchi, Masato</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Linear Algebra with Python: Theory and Applications</btitle><seriestitle>Springer Undergraduate Texts in Mathematics and Technology</seriestitle><date>2023</date><risdate>2023</risdate><issn>1867-5506</issn><eissn>1867-5514</eissn><isbn>9789819929504</isbn><isbn>9819929504</isbn><eisbn>9789819929511</eisbn><eisbn>9819929512</eisbn><abstract>This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron-Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python's libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.</abstract><cop>Singapore</cop><pub>Springer</pub><doi>10.1007/978-981-99-2951-1</doi><oclcid>1415896905</oclcid><tpages>315</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 1867-5506
ispartof
issn 1867-5506
1867-5514
language eng
recordid cdi_askewsholts_vlebooks_9789819929511
source Springer Books
subjects Algebras, Linear
Functional Analysis
Linear Algebra
Mathematics
Mathematics and Statistics
Python
Python (Computer program language)
title Linear Algebra with Python: Theory and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Linear%20Algebra%20with%20Python:%20Theory%20and%20Applications&rft.au=Tsukada,%20Makoto&rft.date=2023&rft.issn=1867-5506&rft.eissn=1867-5514&rft.isbn=9789819929504&rft.isbn_list=9819929504&rft_id=info:doi/10.1007/978-981-99-2951-1&rft_dat=%3Cproquest_askew%3EEBC31001788%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789819929511&rft.eisbn_list=9819929512&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31001788&rft_id=info:pmid/&rfr_iscdi=true