The Theory of Zeta-Functions of Root Systems

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Komori, Yasushi, Matsumoto, Kohji, Tsumura, Hirofumi
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Komori, Yasushi
Matsumoto, Kohji
Tsumura, Hirofumi
description The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions-which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture-are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.
doi_str_mv 10.1007/978-981-99-0910-0
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9789819909100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31094165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a12489-a7e57fa5b942185bfbd9d3dcad9ab4d1dd86a23010e1917bb760d2de9608b5713</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhs2nKKU_gK0jSJj67MT2jVC1gFQJCSoGFsupHVoaYohTUP89CWGA4XTSc897w0vIKbBLYEyNUGmKGigiZQiMsh0yaFiDEFvAdkmPA8pG4Hzv741hsk96kAikSmh-SI4hAYlcKCmPyCDGV8YYR42Qih65mC_9sJlQbYchHz772tLpplzUq1DGljyEUA8ft7H2b_GEHOS2iH7wu_vkaTqZj2_p7P7mbnw1oxZ4opFa5VOV2zTDhINOszxz6IRbWIc2Sxw4p6XlggHzgKCyTEnmuPMomc5SBaJPzrvHNq79V1yGoo7ms_BZCOto_vXQuKPOje_VqnzxleksYKZtsrVNoxtE0wZMmzjrEu9V-Nj4WJufxwtf1pUtzOR6LKBpEWQqvgGvRmn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC31094165</pqid></control><display><type>book</type><title>The Theory of Zeta-Functions of Root Systems</title><source>Springer Books</source><creator>Komori, Yasushi ; Matsumoto, Kohji ; Tsumura, Hirofumi</creator><creatorcontrib>Komori, Yasushi ; Matsumoto, Kohji ; Tsumura, Hirofumi</creatorcontrib><description>The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions-which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture-are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.</description><edition>1</edition><identifier>ISSN: 1439-7382</identifier><identifier>ISBN: 9789819909094</identifier><identifier>ISBN: 9819909090</identifier><identifier>EISSN: 2196-9922</identifier><identifier>EISBN: 9789819909100</identifier><identifier>EISBN: 9819909104</identifier><identifier>DOI: 10.1007/978-981-99-0910-0</identifier><identifier>OCLC: 1416923766</identifier><language>eng</language><publisher>Singapore: Springer Singapore Pte. Limited</publisher><subject>Functions of a Complex Variable ; Functions, Zeta ; Group Theory and Generalizations ; Mathematics ; Mathematics and Statistics ; Number Theory ; Root systems (Algebra)</subject><creationdate>2023</creationdate><tpages>419</tpages><format>419</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Monographs in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-981-99-0910-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-99-0910-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Komori, Yasushi</creatorcontrib><creatorcontrib>Matsumoto, Kohji</creatorcontrib><creatorcontrib>Tsumura, Hirofumi</creatorcontrib><title>The Theory of Zeta-Functions of Root Systems</title><description>The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions-which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture-are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.</description><subject>Functions of a Complex Variable</subject><subject>Functions, Zeta</subject><subject>Group Theory and Generalizations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Root systems (Algebra)</subject><issn>1439-7382</issn><issn>2196-9922</issn><isbn>9789819909094</isbn><isbn>9819909090</isbn><isbn>9789819909100</isbn><isbn>9819909104</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkD1PwzAQhs2nKKU_gK0jSJj67MT2jVC1gFQJCSoGFsupHVoaYohTUP89CWGA4XTSc897w0vIKbBLYEyNUGmKGigiZQiMsh0yaFiDEFvAdkmPA8pG4Hzv741hsk96kAikSmh-SI4hAYlcKCmPyCDGV8YYR42Qih65mC_9sJlQbYchHz772tLpplzUq1DGljyEUA8ft7H2b_GEHOS2iH7wu_vkaTqZj2_p7P7mbnw1oxZ4opFa5VOV2zTDhINOszxz6IRbWIc2Sxw4p6XlggHzgKCyTEnmuPMomc5SBaJPzrvHNq79V1yGoo7ms_BZCOto_vXQuKPOje_VqnzxleksYKZtsrVNoxtE0wZMmzjrEu9V-Nj4WJufxwtf1pUtzOR6LKBpEWQqvgGvRmn2</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Komori, Yasushi</creator><creator>Matsumoto, Kohji</creator><creator>Tsumura, Hirofumi</creator><general>Springer Singapore Pte. Limited</general><general>Springer Nature Singapore</general><general>Springer</general><scope/></search><sort><creationdate>2023</creationdate><title>The Theory of Zeta-Functions of Root Systems</title><author>Komori, Yasushi ; Matsumoto, Kohji ; Tsumura, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a12489-a7e57fa5b942185bfbd9d3dcad9ab4d1dd86a23010e1917bb760d2de9608b5713</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functions of a Complex Variable</topic><topic>Functions, Zeta</topic><topic>Group Theory and Generalizations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Root systems (Algebra)</topic><toplevel>online_resources</toplevel><creatorcontrib>Komori, Yasushi</creatorcontrib><creatorcontrib>Matsumoto, Kohji</creatorcontrib><creatorcontrib>Tsumura, Hirofumi</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komori, Yasushi</au><au>Matsumoto, Kohji</au><au>Tsumura, Hirofumi</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>The Theory of Zeta-Functions of Root Systems</btitle><seriestitle>Springer Monographs in Mathematics</seriestitle><date>2023</date><risdate>2023</risdate><issn>1439-7382</issn><eissn>2196-9922</eissn><isbn>9789819909094</isbn><isbn>9819909090</isbn><eisbn>9789819909100</eisbn><eisbn>9819909104</eisbn><abstract>The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions-which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture-are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.</abstract><cop>Singapore</cop><pub>Springer Singapore Pte. Limited</pub><doi>10.1007/978-981-99-0910-0</doi><oclcid>1416923766</oclcid><tpages>419</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 1439-7382
ispartof
issn 1439-7382
2196-9922
language eng
recordid cdi_askewsholts_vlebooks_9789819909100
source Springer Books
subjects Functions of a Complex Variable
Functions, Zeta
Group Theory and Generalizations
Mathematics
Mathematics and Statistics
Number Theory
Root systems (Algebra)
title The Theory of Zeta-Functions of Root Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=The%20Theory%20of%20Zeta-Functions%20of%20Root%20Systems&rft.au=Komori,%20Yasushi&rft.date=2023&rft.issn=1439-7382&rft.eissn=2196-9922&rft.isbn=9789819909094&rft.isbn_list=9819909090&rft_id=info:doi/10.1007/978-981-99-0910-0&rft_dat=%3Cproquest_askew%3EEBC31094165%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789819909100&rft.eisbn_list=9819909104&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31094165&rft_id=info:pmid/&rfr_iscdi=true