Data-Driven Approach for Bio-Medical and Healthcare
The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbal...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Dey, Nilanjan |
description | The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively. |
doi_str_mv | 10.1007/978-981-19-5184-8 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9789811951848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7127049</sourcerecordid><originalsourceid>FETCH-LOGICAL-a10904-b435bf8cc8e65d8ff11aa32e2020ea6343959506e0c8d0b70bd88c71bfd68c903</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1TtKU_gFtuiIPpbhzH9rEvKFIRF4S4WY7j0NAoKXFa_j4JQeW0Gs03I-0QcoNwjwBiooSkSiJFRTnKiMoTMmw1qk7xUzIIBUPKeSzP_g0mzo8Gf78kQ2QcooiDEFdk7P0nAHQ2C3FA2MI0hi7q_ODKYLrb1ZWxmyCr6mCWV_TZpbk1RWDKNFg5UzQba2p3TS4yU3g3_rsj8vawfJ2v6Prl8Wk-XVODoCCiScR4kklrpYt5KrMM0RgWuhBCcCZmEVNccYgdWJlCIiBJpbQCkyyNpVXARuSuLzZ-6779pioarw-FS6pq63U7znEL2bKTnvW7Oi8_XK17CkF3U3a0bnGNSncB3SVu-0T79Nfe-Ub_FltXNrUp9HI2FxgKiBT7Af_wakw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7127049</pqid></control><display><type>book</type><title>Data-Driven Approach for Bio-Medical and Healthcare</title><source>Springer Books</source><creator>Dey, Nilanjan</creator><contributor>Dey, Nilanjan</contributor><creatorcontrib>Dey, Nilanjan ; Dey, Nilanjan</creatorcontrib><description>The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.</description><edition>1</edition><identifier>ISSN: 2731-555X</identifier><identifier>ISBN: 9811951837</identifier><identifier>ISBN: 9789811951831</identifier><identifier>EISSN: 2731-5568</identifier><identifier>EISBN: 9811951845</identifier><identifier>EISBN: 9789811951848</identifier><identifier>DOI: 10.1007/978-981-19-5184-8</identifier><identifier>OCLC: 1350445077</identifier><language>eng</language><publisher>Singapore: Springer</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Cyber-physical systems, IoT ; Data mining ; Engineering ; Medical care ; Professional Computing ; Statistics, general</subject><creationdate>2022</creationdate><tpages>238</tpages><format>238</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Data-Intensive Research</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-981-19-5184-8</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-19-5184-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27904,38234,42490</link.rule.ids></links><search><contributor>Dey, Nilanjan</contributor><creatorcontrib>Dey, Nilanjan</creatorcontrib><title>Data-Driven Approach for Bio-Medical and Healthcare</title><description>The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Cyber-physical systems, IoT</subject><subject>Data mining</subject><subject>Engineering</subject><subject>Medical care</subject><subject>Professional Computing</subject><subject>Statistics, general</subject><issn>2731-555X</issn><issn>2731-5568</issn><isbn>9811951837</isbn><isbn>9789811951831</isbn><isbn>9811951845</isbn><isbn>9789811951848</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpFkEtPwzAQhM1TtKU_gFtuiIPpbhzH9rEvKFIRF4S4WY7j0NAoKXFa_j4JQeW0Gs03I-0QcoNwjwBiooSkSiJFRTnKiMoTMmw1qk7xUzIIBUPKeSzP_g0mzo8Gf78kQ2QcooiDEFdk7P0nAHQ2C3FA2MI0hi7q_ODKYLrb1ZWxmyCr6mCWV_TZpbk1RWDKNFg5UzQba2p3TS4yU3g3_rsj8vawfJ2v6Prl8Wk-XVODoCCiScR4kklrpYt5KrMM0RgWuhBCcCZmEVNccYgdWJlCIiBJpbQCkyyNpVXARuSuLzZ-6779pioarw-FS6pq63U7znEL2bKTnvW7Oi8_XK17CkF3U3a0bnGNSncB3SVu-0T79Nfe-Ub_FltXNrUp9HI2FxgKiBT7Af_wakw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dey, Nilanjan</creator><general>Springer</general><general>Springer Nature Singapore</general><scope/></search><sort><creationdate>2022</creationdate><title>Data-Driven Approach for Bio-Medical and Healthcare</title><author>Dey, Nilanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a10904-b435bf8cc8e65d8ff11aa32e2020ea6343959506e0c8d0b70bd88c71bfd68c903</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Cyber-physical systems, IoT</topic><topic>Data mining</topic><topic>Engineering</topic><topic>Medical care</topic><topic>Professional Computing</topic><topic>Statistics, general</topic><toplevel>online_resources</toplevel><creatorcontrib>Dey, Nilanjan</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Nilanjan</au><au>Dey, Nilanjan</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Data-Driven Approach for Bio-Medical and Healthcare</btitle><seriestitle>Data-Intensive Research</seriestitle><date>2022</date><risdate>2022</risdate><issn>2731-555X</issn><eissn>2731-5568</eissn><isbn>9811951837</isbn><isbn>9789811951831</isbn><eisbn>9811951845</eisbn><eisbn>9789811951848</eisbn><abstract>The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.</abstract><cop>Singapore</cop><pub>Springer</pub><doi>10.1007/978-981-19-5184-8</doi><oclcid>1350445077</oclcid><tpages>238</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-555X |
ispartof | |
issn | 2731-555X 2731-5568 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9789811951848 |
source | Springer Books |
subjects | Artificial Intelligence Computational Intelligence Cyber-physical systems, IoT Data mining Engineering Medical care Professional Computing Statistics, general |
title | Data-Driven Approach for Bio-Medical and Healthcare |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Data-Driven%20Approach%20for%20Bio-Medical%20and%20Healthcare&rft.au=Dey,%20Nilanjan&rft.date=2022&rft.issn=2731-555X&rft.eissn=2731-5568&rft.isbn=9811951837&rft.isbn_list=9789811951831&rft_id=info:doi/10.1007/978-981-19-5184-8&rft_dat=%3Cproquest_askew%3EEBC7127049%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9811951845&rft.eisbn_list=9789811951848&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7127049&rft_id=info:pmid/&rfr_iscdi=true |