Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits

The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santikellur, Pranesh, Chakraborty, Rajat Subhra
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 1052
creator Santikellur, Pranesh
Chakraborty, Rajat Subhra
description The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.
doi_str_mv 10.1007/978-981-19-4017-0
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9789811940170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7088008</sourcerecordid><originalsourceid>FETCH-LOGICAL-a13394-3434bbe028a65d3a9e9d538ba310c8a880b24832757de8bf67ee8b9a827443e83</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc1TlNIPYJcdYhE6jp3YXrCAUChSJZBAiJ3lNFMITeNgp1T8PQmBRVcj3Tl3HpeQUwoXFECMlZChkjSkKuRARQg7ZNRqrURVJ8AuGVCZQKhiYHtbvYTt__e4ej0kx5TxOJZxzNkRGXn_AQCRYJQxNSCXN4h1MEPjqqJ6CxbWBald1evGNIWtTBk8OpuVuPJBUQVT4_KNcRg84Xztiub7hBwsTOlx9FeH5OV28pxOw9nD3X16NQtNt4WHjDOeZQiRNEmcM6NQ5TGTmWEU5tJICVnEJYtELHKU2SIR2BZlZCQ4ZyjZkJz3g41f4sa_27Lx-qvEzNql11vBtOy4Z33t2p_Q6Z6ioLtoO1q3uKZKdwbdOc56R-3s5xp9o38Hz7FqnCn15DoV0N4Ikv0Apnlvpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7088008</pqid></control><display><type>book</type><title>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</title><source>Springer Books</source><creator>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</creator><creatorcontrib>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</creatorcontrib><description>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</description><edition>1</edition><identifier>ISSN: 1860-949X</identifier><identifier>ISBN: 9789811940163</identifier><identifier>ISBN: 9811940169</identifier><identifier>EISSN: 1860-9503</identifier><identifier>EISBN: 9789811940170</identifier><identifier>EISBN: 9811940177</identifier><identifier>DOI: 10.1007/978-981-19-4017-0</identifier><identifier>OCLC: 1345585543</identifier><language>eng</language><publisher>Singapore: Springer</publisher><subject>Artificial Intelligence ; Circuits and Systems ; Computer science ; Computer Science, general ; Computer security ; Engineering ; Machine learning ; Mathematics, general ; Special Purpose and Application-Based Systems</subject><creationdate>2022</creationdate><tpages>92</tpages><format>92</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Studies in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-981-19-4017-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-19-4017-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>307,782,786,788,27934,38264,42520</link.rule.ids></links><search><creatorcontrib>Santikellur, Pranesh</creatorcontrib><creatorcontrib>Chakraborty, Rajat Subhra</creatorcontrib><title>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</title><description>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</description><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Computer science</subject><subject>Computer Science, general</subject><subject>Computer security</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Mathematics, general</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1860-949X</issn><issn>1860-9503</issn><isbn>9789811940163</isbn><isbn>9811940169</isbn><isbn>9789811940170</isbn><isbn>9811940177</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkMtOwzAQRc1TlNIPYJcdYhE6jp3YXrCAUChSJZBAiJ3lNFMITeNgp1T8PQmBRVcj3Tl3HpeQUwoXFECMlZChkjSkKuRARQg7ZNRqrURVJ8AuGVCZQKhiYHtbvYTt__e4ej0kx5TxOJZxzNkRGXn_AQCRYJQxNSCXN4h1MEPjqqJ6CxbWBald1evGNIWtTBk8OpuVuPJBUQVT4_KNcRg84Xztiub7hBwsTOlx9FeH5OV28pxOw9nD3X16NQtNt4WHjDOeZQiRNEmcM6NQ5TGTmWEU5tJICVnEJYtELHKU2SIR2BZlZCQ4ZyjZkJz3g41f4sa_27Lx-qvEzNql11vBtOy4Z33t2p_Q6Z6ioLtoO1q3uKZKdwbdOc56R-3s5xp9o38Hz7FqnCn15DoV0N4Ikv0Apnlvpg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Santikellur, Pranesh</creator><creator>Chakraborty, Rajat Subhra</creator><general>Springer</general><general>Springer Nature Singapore</general><scope/></search><sort><creationdate>2022</creationdate><title>Deep Learning for Computational Problems in Hardware Security</title><author>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a13394-3434bbe028a65d3a9e9d538ba310c8a880b24832757de8bf67ee8b9a827443e83</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Computer science</topic><topic>Computer Science, general</topic><topic>Computer security</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Mathematics, general</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Santikellur, Pranesh</creatorcontrib><creatorcontrib>Chakraborty, Rajat Subhra</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santikellur, Pranesh</au><au>Chakraborty, Rajat Subhra</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</btitle><seriestitle>Studies in Computational Intelligence</seriestitle><date>2022</date><risdate>2022</risdate><volume>1052</volume><issn>1860-949X</issn><eissn>1860-9503</eissn><isbn>9789811940163</isbn><isbn>9811940169</isbn><eisbn>9789811940170</eisbn><eisbn>9811940177</eisbn><abstract>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</abstract><cop>Singapore</cop><pub>Springer</pub><doi>10.1007/978-981-19-4017-0</doi><oclcid>1345585543</oclcid><tpages>92</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 1860-949X
ispartof
issn 1860-949X
1860-9503
language eng
recordid cdi_askewsholts_vlebooks_9789811940170
source Springer Books
subjects Artificial Intelligence
Circuits and Systems
Computer science
Computer Science, general
Computer security
Engineering
Machine learning
Mathematics, general
Special Purpose and Application-Based Systems
title Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T11%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Learning%20for%20Computational%20Problems%20in%20Hardware%20Security:%20Modeling%20Attacks%20on%20Strong%20Physically%20Unclonable%20Function%20Circuits&rft.au=Santikellur,%20Pranesh&rft.date=2022&rft.volume=1052&rft.issn=1860-949X&rft.eissn=1860-9503&rft.isbn=9789811940163&rft.isbn_list=9811940169&rft_id=info:doi/10.1007/978-981-19-4017-0&rft_dat=%3Cproquest_askew%3EEBC7088008%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789811940170&rft.eisbn_list=9811940177&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7088008&rft_id=info:pmid/&rfr_iscdi=true