Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits
The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 1052 |
creator | Santikellur, Pranesh Chakraborty, Rajat Subhra |
description | The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book. |
doi_str_mv | 10.1007/978-981-19-4017-0 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9789811940170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7088008</sourcerecordid><originalsourceid>FETCH-LOGICAL-a13394-3434bbe028a65d3a9e9d538ba310c8a880b24832757de8bf67ee8b9a827443e83</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc1TlNIPYJcdYhE6jp3YXrCAUChSJZBAiJ3lNFMITeNgp1T8PQmBRVcj3Tl3HpeQUwoXFECMlZChkjSkKuRARQg7ZNRqrURVJ8AuGVCZQKhiYHtbvYTt__e4ej0kx5TxOJZxzNkRGXn_AQCRYJQxNSCXN4h1MEPjqqJ6CxbWBald1evGNIWtTBk8OpuVuPJBUQVT4_KNcRg84Xztiub7hBwsTOlx9FeH5OV28pxOw9nD3X16NQtNt4WHjDOeZQiRNEmcM6NQ5TGTmWEU5tJICVnEJYtELHKU2SIR2BZlZCQ4ZyjZkJz3g41f4sa_27Lx-qvEzNql11vBtOy4Z33t2p_Q6Z6ioLtoO1q3uKZKdwbdOc56R-3s5xp9o38Hz7FqnCn15DoV0N4Ikv0Apnlvpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7088008</pqid></control><display><type>book</type><title>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</title><source>Springer Books</source><creator>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</creator><creatorcontrib>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</creatorcontrib><description>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</description><edition>1</edition><identifier>ISSN: 1860-949X</identifier><identifier>ISBN: 9789811940163</identifier><identifier>ISBN: 9811940169</identifier><identifier>EISSN: 1860-9503</identifier><identifier>EISBN: 9789811940170</identifier><identifier>EISBN: 9811940177</identifier><identifier>DOI: 10.1007/978-981-19-4017-0</identifier><identifier>OCLC: 1345585543</identifier><language>eng</language><publisher>Singapore: Springer</publisher><subject>Artificial Intelligence ; Circuits and Systems ; Computer science ; Computer Science, general ; Computer security ; Engineering ; Machine learning ; Mathematics, general ; Special Purpose and Application-Based Systems</subject><creationdate>2022</creationdate><tpages>92</tpages><format>92</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Studies in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-981-19-4017-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-19-4017-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>307,782,786,788,27934,38264,42520</link.rule.ids></links><search><creatorcontrib>Santikellur, Pranesh</creatorcontrib><creatorcontrib>Chakraborty, Rajat Subhra</creatorcontrib><title>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</title><description>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</description><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Computer science</subject><subject>Computer Science, general</subject><subject>Computer security</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Mathematics, general</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1860-949X</issn><issn>1860-9503</issn><isbn>9789811940163</isbn><isbn>9811940169</isbn><isbn>9789811940170</isbn><isbn>9811940177</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkMtOwzAQRc1TlNIPYJcdYhE6jp3YXrCAUChSJZBAiJ3lNFMITeNgp1T8PQmBRVcj3Tl3HpeQUwoXFECMlZChkjSkKuRARQg7ZNRqrURVJ8AuGVCZQKhiYHtbvYTt__e4ej0kx5TxOJZxzNkRGXn_AQCRYJQxNSCXN4h1MEPjqqJ6CxbWBald1evGNIWtTBk8OpuVuPJBUQVT4_KNcRg84Xztiub7hBwsTOlx9FeH5OV28pxOw9nD3X16NQtNt4WHjDOeZQiRNEmcM6NQ5TGTmWEU5tJICVnEJYtELHKU2SIR2BZlZCQ4ZyjZkJz3g41f4sa_27Lx-qvEzNql11vBtOy4Z33t2p_Q6Z6ioLtoO1q3uKZKdwbdOc56R-3s5xp9o38Hz7FqnCn15DoV0N4Ikv0Apnlvpg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Santikellur, Pranesh</creator><creator>Chakraborty, Rajat Subhra</creator><general>Springer</general><general>Springer Nature Singapore</general><scope/></search><sort><creationdate>2022</creationdate><title>Deep Learning for Computational Problems in Hardware Security</title><author>Santikellur, Pranesh ; Chakraborty, Rajat Subhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a13394-3434bbe028a65d3a9e9d538ba310c8a880b24832757de8bf67ee8b9a827443e83</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Computer science</topic><topic>Computer Science, general</topic><topic>Computer security</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Mathematics, general</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Santikellur, Pranesh</creatorcontrib><creatorcontrib>Chakraborty, Rajat Subhra</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santikellur, Pranesh</au><au>Chakraborty, Rajat Subhra</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits</btitle><seriestitle>Studies in Computational Intelligence</seriestitle><date>2022</date><risdate>2022</risdate><volume>1052</volume><issn>1860-949X</issn><eissn>1860-9503</eissn><isbn>9789811940163</isbn><isbn>9811940169</isbn><eisbn>9789811940170</eisbn><eisbn>9811940177</eisbn><abstract>The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.</abstract><cop>Singapore</cop><pub>Springer</pub><doi>10.1007/978-981-19-4017-0</doi><oclcid>1345585543</oclcid><tpages>92</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-949X |
ispartof | |
issn | 1860-949X 1860-9503 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9789811940170 |
source | Springer Books |
subjects | Artificial Intelligence Circuits and Systems Computer science Computer Science, general Computer security Engineering Machine learning Mathematics, general Special Purpose and Application-Based Systems |
title | Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T11%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Learning%20for%20Computational%20Problems%20in%20Hardware%20Security:%20Modeling%20Attacks%20on%20Strong%20Physically%20Unclonable%20Function%20Circuits&rft.au=Santikellur,%20Pranesh&rft.date=2022&rft.volume=1052&rft.issn=1860-949X&rft.eissn=1860-9503&rft.isbn=9789811940163&rft.isbn_list=9811940169&rft_id=info:doi/10.1007/978-981-19-4017-0&rft_dat=%3Cproquest_askew%3EEBC7088008%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789811940170&rft.eisbn_list=9811940177&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7088008&rft_id=info:pmid/&rfr_iscdi=true |