Algebraic Integrability, Painlevé Geometry and Lie Algebras

This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adler, Mark, van Moerbeke, Pierre, Vanhaecke, Pol
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 47
creator Adler, Mark
van Moerbeke, Pierre
Vanhaecke, Pol
description This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.
doi_str_mv 10.1007/978-3-662-05650-9
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783662056509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3100500</sourcerecordid><originalsourceid>FETCH-LOGICAL-a35904-2afead62ad1bc518fd100aa40af232b329eaed65e1e473c205e78908f7707d683</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQh1f8g6X2AbzlJoKxs7vJbha81FKrUNCDeF02yaSNjUndjZU-ks_hi7ltehHE0zA_vm-YGULOKVxTADlUMgl5KAQLIRYxhOqADHzGfbIL1OG-jxgIypLkiPS8R0NKuTghPcUFp0pIekoGzr0CAGUqllL2yM2ommNqTZkFD3WLc2vSsirbzVXwZMq6wvX3VzDF5g1buwlMnQezEoO9487IcWEqh4N97ZOXu8nz-D6cPU4fxqNZaHisIAqZKdDkgpmcpllMkyL3ZxkTgSkYZylnCg3mIkaKkeSZPwploiAppASZi4T3yWU32LglfrpFU7VOrytMm2bp9K9XeHbYsW5ly3qOVncUBb195pbWXHte7wS9NcQfhrHZolzj_-JFJ65s8_6BrtW7jTKsW2sqPbkdc2_GAPwHyfR_HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3100500</pqid></control><display><type>book</type><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><source>Springer Books</source><creator>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol</creator><creatorcontrib>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol ; SpringerLink (Online service)</creatorcontrib><description>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</description><edition>2004 edition.</edition><identifier>ISSN: 0071-1136</identifier><identifier>ISBN: 9783642061288</identifier><identifier>ISBN: 3642061281</identifier><identifier>ISBN: 9783662056516</identifier><identifier>ISBN: 354022470X</identifier><identifier>ISBN: 9783540224709</identifier><identifier>ISBN: 3662056518</identifier><identifier>EISBN: 9783662056509</identifier><identifier>EISBN: 366205650X</identifier><identifier>DOI: 10.1007/978-3-662-05650-9</identifier><identifier>OCLC: 936319671</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Geometry ; Geometry, algebraic ; Lie algebras ; Mathematical Methods in Physics ; Mathematical physics ; Mathematics ; Mathematics and Statistics ; Topological Groups ; Topological Groups, Lie Groups</subject><creationdate>2004</creationdate><tpages>486</tpages><format>486</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-662-05650-9</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-662-05650-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-662-05650-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,777,781,783,24761,27906,38236,41423,42492</link.rule.ids></links><search><creatorcontrib>Adler, Mark</creatorcontrib><creatorcontrib>van Moerbeke, Pierre</creatorcontrib><creatorcontrib>Vanhaecke, Pol</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><description>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</description><subject>Algebraic Geometry</subject><subject>Geometry</subject><subject>Geometry, algebraic</subject><subject>Lie algebras</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><subject>Topological Groups, Lie Groups</subject><issn>0071-1136</issn><isbn>9783642061288</isbn><isbn>3642061281</isbn><isbn>9783662056516</isbn><isbn>354022470X</isbn><isbn>9783540224709</isbn><isbn>3662056518</isbn><isbn>9783662056509</isbn><isbn>366205650X</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2004</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNp9kM9Kw0AQh1f8g6X2AbzlJoKxs7vJbha81FKrUNCDeF02yaSNjUndjZU-ks_hi7ltehHE0zA_vm-YGULOKVxTADlUMgl5KAQLIRYxhOqADHzGfbIL1OG-jxgIypLkiPS8R0NKuTghPcUFp0pIekoGzr0CAGUqllL2yM2ommNqTZkFD3WLc2vSsirbzVXwZMq6wvX3VzDF5g1buwlMnQezEoO9487IcWEqh4N97ZOXu8nz-D6cPU4fxqNZaHisIAqZKdDkgpmcpllMkyL3ZxkTgSkYZylnCg3mIkaKkeSZPwploiAppASZi4T3yWU32LglfrpFU7VOrytMm2bp9K9XeHbYsW5ly3qOVncUBb195pbWXHte7wS9NcQfhrHZolzj_-JFJ65s8_6BrtW7jTKsW2sqPbkdc2_GAPwHyfR_HQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Adler, Mark</creator><creator>van Moerbeke, Pierre</creator><creator>Vanhaecke, Pol</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2004</creationdate><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><author>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a35904-2afead62ad1bc518fd100aa40af232b329eaed65e1e473c205e78908f7707d683</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebraic Geometry</topic><topic>Geometry</topic><topic>Geometry, algebraic</topic><topic>Lie algebras</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><topic>Topological Groups, Lie Groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Adler, Mark</creatorcontrib><creatorcontrib>van Moerbeke, Pierre</creatorcontrib><creatorcontrib>Vanhaecke, Pol</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, Mark</au><au>van Moerbeke, Pierre</au><au>Vanhaecke, Pol</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Algebraic Integrability, Painlevé Geometry and Lie Algebras</btitle><seriestitle>Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics</seriestitle><date>2004</date><risdate>2004</risdate><volume>47</volume><issn>0071-1136</issn><isbn>9783642061288</isbn><isbn>3642061281</isbn><isbn>9783662056516</isbn><isbn>354022470X</isbn><isbn>9783540224709</isbn><isbn>3662056518</isbn><eisbn>9783662056509</eisbn><eisbn>366205650X</eisbn><abstract>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-662-05650-9</doi><oclcid>936319671</oclcid><tpages>486</tpages><edition>2004 edition.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0071-1136
ispartof
issn 0071-1136
language eng
recordid cdi_askewsholts_vlebooks_9783662056509
source Springer Books
subjects Algebraic Geometry
Geometry
Geometry, algebraic
Lie algebras
Mathematical Methods in Physics
Mathematical physics
Mathematics
Mathematics and Statistics
Topological Groups
Topological Groups, Lie Groups
title Algebraic Integrability, Painlevé Geometry and Lie Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Algebraic%20Integrability,%20Painlev%C3%A9%20Geometry%20and%20Lie%20Algebras&rft.au=Adler,%20Mark&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2004&rft.volume=47&rft.issn=0071-1136&rft.isbn=9783642061288&rft.isbn_list=3642061281&rft.isbn_list=9783662056516&rft.isbn_list=354022470X&rft.isbn_list=9783540224709&rft.isbn_list=3662056518&rft_id=info:doi/10.1007/978-3-662-05650-9&rft_dat=%3Cproquest_askew%3EEBC3100500%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783662056509&rft.eisbn_list=366205650X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3100500&rft_id=info:pmid/&rfr_iscdi=true