Algebraic Integrability, Painlevé Geometry and Lie Algebras
This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 47 |
creator | Adler, Mark van Moerbeke, Pierre Vanhaecke, Pol |
description | This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic. |
doi_str_mv | 10.1007/978-3-662-05650-9 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783662056509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3100500</sourcerecordid><originalsourceid>FETCH-LOGICAL-a35904-2afead62ad1bc518fd100aa40af232b329eaed65e1e473c205e78908f7707d683</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQh1f8g6X2AbzlJoKxs7vJbha81FKrUNCDeF02yaSNjUndjZU-ks_hi7ltehHE0zA_vm-YGULOKVxTADlUMgl5KAQLIRYxhOqADHzGfbIL1OG-jxgIypLkiPS8R0NKuTghPcUFp0pIekoGzr0CAGUqllL2yM2ommNqTZkFD3WLc2vSsirbzVXwZMq6wvX3VzDF5g1buwlMnQezEoO9487IcWEqh4N97ZOXu8nz-D6cPU4fxqNZaHisIAqZKdDkgpmcpllMkyL3ZxkTgSkYZylnCg3mIkaKkeSZPwploiAppASZi4T3yWU32LglfrpFU7VOrytMm2bp9K9XeHbYsW5ly3qOVncUBb195pbWXHte7wS9NcQfhrHZolzj_-JFJ65s8_6BrtW7jTKsW2sqPbkdc2_GAPwHyfR_HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3100500</pqid></control><display><type>book</type><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><source>Springer Books</source><creator>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol</creator><creatorcontrib>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol ; SpringerLink (Online service)</creatorcontrib><description>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</description><edition>2004 edition.</edition><identifier>ISSN: 0071-1136</identifier><identifier>ISBN: 9783642061288</identifier><identifier>ISBN: 3642061281</identifier><identifier>ISBN: 9783662056516</identifier><identifier>ISBN: 354022470X</identifier><identifier>ISBN: 9783540224709</identifier><identifier>ISBN: 3662056518</identifier><identifier>EISBN: 9783662056509</identifier><identifier>EISBN: 366205650X</identifier><identifier>DOI: 10.1007/978-3-662-05650-9</identifier><identifier>OCLC: 936319671</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Geometry ; Geometry, algebraic ; Lie algebras ; Mathematical Methods in Physics ; Mathematical physics ; Mathematics ; Mathematics and Statistics ; Topological Groups ; Topological Groups, Lie Groups</subject><creationdate>2004</creationdate><tpages>486</tpages><format>486</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-662-05650-9</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-662-05650-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-662-05650-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,777,781,783,24761,27906,38236,41423,42492</link.rule.ids></links><search><creatorcontrib>Adler, Mark</creatorcontrib><creatorcontrib>van Moerbeke, Pierre</creatorcontrib><creatorcontrib>Vanhaecke, Pol</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><description>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</description><subject>Algebraic Geometry</subject><subject>Geometry</subject><subject>Geometry, algebraic</subject><subject>Lie algebras</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><subject>Topological Groups, Lie Groups</subject><issn>0071-1136</issn><isbn>9783642061288</isbn><isbn>3642061281</isbn><isbn>9783662056516</isbn><isbn>354022470X</isbn><isbn>9783540224709</isbn><isbn>3662056518</isbn><isbn>9783662056509</isbn><isbn>366205650X</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2004</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNp9kM9Kw0AQh1f8g6X2AbzlJoKxs7vJbha81FKrUNCDeF02yaSNjUndjZU-ks_hi7ltehHE0zA_vm-YGULOKVxTADlUMgl5KAQLIRYxhOqADHzGfbIL1OG-jxgIypLkiPS8R0NKuTghPcUFp0pIekoGzr0CAGUqllL2yM2ommNqTZkFD3WLc2vSsirbzVXwZMq6wvX3VzDF5g1buwlMnQezEoO9487IcWEqh4N97ZOXu8nz-D6cPU4fxqNZaHisIAqZKdDkgpmcpllMkyL3ZxkTgSkYZylnCg3mIkaKkeSZPwploiAppASZi4T3yWU32LglfrpFU7VOrytMm2bp9K9XeHbYsW5ly3qOVncUBb195pbWXHte7wS9NcQfhrHZolzj_-JFJ65s8_6BrtW7jTKsW2sqPbkdc2_GAPwHyfR_HQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Adler, Mark</creator><creator>van Moerbeke, Pierre</creator><creator>Vanhaecke, Pol</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2004</creationdate><title>Algebraic Integrability, Painlevé Geometry and Lie Algebras</title><author>Adler, Mark ; van Moerbeke, Pierre ; Vanhaecke, Pol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a35904-2afead62ad1bc518fd100aa40af232b329eaed65e1e473c205e78908f7707d683</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebraic Geometry</topic><topic>Geometry</topic><topic>Geometry, algebraic</topic><topic>Lie algebras</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><topic>Topological Groups, Lie Groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Adler, Mark</creatorcontrib><creatorcontrib>van Moerbeke, Pierre</creatorcontrib><creatorcontrib>Vanhaecke, Pol</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, Mark</au><au>van Moerbeke, Pierre</au><au>Vanhaecke, Pol</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Algebraic Integrability, Painlevé Geometry and Lie Algebras</btitle><seriestitle>Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics</seriestitle><date>2004</date><risdate>2004</risdate><volume>47</volume><issn>0071-1136</issn><isbn>9783642061288</isbn><isbn>3642061281</isbn><isbn>9783662056516</isbn><isbn>354022470X</isbn><isbn>9783540224709</isbn><isbn>3662056518</isbn><eisbn>9783662056509</eisbn><eisbn>366205650X</eisbn><abstract>This Ergebnisse volume is aimed at a wide readership of mathematicians and physicists, graduate students and professionals.;The main thrust of the book is to show how algebraic geometry, Lie theory and Painleve analysis can be used to explicitly solve integrable differential equations and construct the algebraic tori on which they linearize; at the same time, it is, for the student, a playing ground to applying algebraic geometry and Lie theory.;The book is meant to be reasonably self-contained and presents numerous examples.;The latter appear throughout the text to illustrate the ideas, and make up the core of the last part of the book.;The first part of the book contains the basic tools from Lie groups, algebraic and differential geometry to understand the main topic.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-662-05650-9</doi><oclcid>936319671</oclcid><tpages>486</tpages><edition>2004 edition.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0071-1136 |
ispartof | |
issn | 0071-1136 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783662056509 |
source | Springer Books |
subjects | Algebraic Geometry Geometry Geometry, algebraic Lie algebras Mathematical Methods in Physics Mathematical physics Mathematics Mathematics and Statistics Topological Groups Topological Groups, Lie Groups |
title | Algebraic Integrability, Painlevé Geometry and Lie Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Algebraic%20Integrability,%20Painlev%C3%A9%20Geometry%20and%20Lie%20Algebras&rft.au=Adler,%20Mark&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2004&rft.volume=47&rft.issn=0071-1136&rft.isbn=9783642061288&rft.isbn_list=3642061281&rft.isbn_list=9783662056516&rft.isbn_list=354022470X&rft.isbn_list=9783540224709&rft.isbn_list=3662056518&rft_id=info:doi/10.1007/978-3-662-05650-9&rft_dat=%3Cproquest_askew%3EEBC3100500%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783662056509&rft.eisbn_list=366205650X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3100500&rft_id=info:pmid/&rfr_iscdi=true |