Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie

This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boas, Ralph P.Jr, Buck, R.C
Format: Buch
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 19
creator Boas, Ralph P.Jr
Buck, R.C
description This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of results dealing with the more or less formal prop- erties of sets of polynomials which possess simple generating relations. Much of this material is summarized in the Bateman compendia (ERDELYI [1J, vol. III, chap. 19) and in TRUESDELL [1J. On the other hand, a problem of fundamental interest in classical analysis is to study the representability of an analytic function j(z) as a series 2::CnPn(z), where {Pn} is a prescribed sequence of functions, and the connections between the function j and the coefficients en. BIEBERBACH'S mono- graph Analytisehe Fortsetzung (Ergebnisse der Mathematik, new series, no. 3) can be regarded as a study of this problem for the special choice Pn (z) = zn, and illustrates the depth and detail which such a specializa- tion allows. However, the wealth of available information about other sets of polynomials has seldom been put to work in this connection (the application of generating relations to expansion of functions is not even mentioned in the Bateman compendia). At the other extreme, J. M.
format Book
fullrecord <record><control><sourceid>askewsholts</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783642878879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9783642878879</sourcerecordid><originalsourceid>FETCH-askewsholts_vlebooks_97836428788793</originalsourceid><addsrcrecordid>eNqVjj0LwjAURSMiKNr_kNVBSJtq024iLS6CiHuJ9ZXGxjzpqx_991J0cXS6nHvucAfMiyMlV2GgIqWiePjhZSiE9AMZj5lHdBFC-EGshBITttuj7RxejbY8fd20I4OOOJZ87bTtWlPw7O6Ktm8TfgBTQcJ3eIbGQW_q3oBrK8DGwIyNSm0JvG9O2TxLj5vtQlMNT6rQtpQ_LJwQa8p_rsp_tm8VT0Xk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie</title><source>Springer Books</source><creator>Boas, Ralph P.Jr ; Buck, R.C</creator><creatorcontrib>Boas, Ralph P.Jr ; Buck, R.C</creatorcontrib><description>This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of results dealing with the more or less formal prop- erties of sets of polynomials which possess simple generating relations. Much of this material is summarized in the Bateman compendia (ERDELYI [1J, vol. III, chap. 19) and in TRUESDELL [1J. On the other hand, a problem of fundamental interest in classical analysis is to study the representability of an analytic function j(z) as a series 2::CnPn(z), where {Pn} is a prescribed sequence of functions, and the connections between the function j and the coefficients en. BIEBERBACH'S mono- graph Analytisehe Fortsetzung (Ergebnisse der Mathematik, new series, no. 3) can be regarded as a study of this problem for the special choice Pn (z) = zn, and illustrates the depth and detail which such a specializa- tion allows. However, the wealth of available information about other sets of polynomials has seldom been put to work in this connection (the application of generating relations to expansion of functions is not even mentioned in the Bateman compendia). At the other extreme, J. M.</description><identifier>ISBN: 9783540031239</identifier><identifier>ISBN: 3540031235</identifier><identifier>EISBN: 9783642878879</identifier><identifier>EISBN: 3642878873</identifier><language>eng</language><publisher>Springer</publisher><creationdate>2012</creationdate><tpages>1</tpages><format>1</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786</link.rule.ids></links><search><creatorcontrib>Boas, Ralph P.Jr</creatorcontrib><creatorcontrib>Buck, R.C</creatorcontrib><title>Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie</title><description>This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of results dealing with the more or less formal prop- erties of sets of polynomials which possess simple generating relations. Much of this material is summarized in the Bateman compendia (ERDELYI [1J, vol. III, chap. 19) and in TRUESDELL [1J. On the other hand, a problem of fundamental interest in classical analysis is to study the representability of an analytic function j(z) as a series 2::CnPn(z), where {Pn} is a prescribed sequence of functions, and the connections between the function j and the coefficients en. BIEBERBACH'S mono- graph Analytisehe Fortsetzung (Ergebnisse der Mathematik, new series, no. 3) can be regarded as a study of this problem for the special choice Pn (z) = zn, and illustrates the depth and detail which such a specializa- tion allows. However, the wealth of available information about other sets of polynomials has seldom been put to work in this connection (the application of generating relations to expansion of functions is not even mentioned in the Bateman compendia). At the other extreme, J. M.</description><isbn>9783540031239</isbn><isbn>3540031235</isbn><isbn>9783642878879</isbn><isbn>3642878873</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2012</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNqVjj0LwjAURSMiKNr_kNVBSJtq024iLS6CiHuJ9ZXGxjzpqx_991J0cXS6nHvucAfMiyMlV2GgIqWiePjhZSiE9AMZj5lHdBFC-EGshBITttuj7RxejbY8fd20I4OOOJZ87bTtWlPw7O6Ktm8TfgBTQcJ3eIbGQW_q3oBrK8DGwIyNSm0JvG9O2TxLj5vtQlMNT6rQtpQ_LJwQa8p_rsp_tm8VT0Xk</recordid><startdate>20121206</startdate><enddate>20121206</enddate><creator>Boas, Ralph P.Jr</creator><creator>Buck, R.C</creator><general>Springer</general><scope/></search><sort><creationdate>20121206</creationdate><title>Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie</title><author>Boas, Ralph P.Jr ; Buck, R.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-askewsholts_vlebooks_97836428788793</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Boas, Ralph P.Jr</creatorcontrib><creatorcontrib>Buck, R.C</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boas, Ralph P.Jr</au><au>Buck, R.C</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie</btitle><seriestitle>Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge</seriestitle><date>2012-12-06</date><risdate>2012</risdate><volume>19</volume><isbn>9783540031239</isbn><isbn>3540031235</isbn><eisbn>9783642878879</eisbn><eisbn>3642878873</eisbn><abstract>This monograph deals with the expansion properties, in the complex domain, of sets of polynomials which are defined by generating relations. It thus represents a synthesis of two branches of analysis which have been developing almost independently. On the one hand there has grown up a body of results dealing with the more or less formal prop- erties of sets of polynomials which possess simple generating relations. Much of this material is summarized in the Bateman compendia (ERDELYI [1J, vol. III, chap. 19) and in TRUESDELL [1J. On the other hand, a problem of fundamental interest in classical analysis is to study the representability of an analytic function j(z) as a series 2::CnPn(z), where {Pn} is a prescribed sequence of functions, and the connections between the function j and the coefficients en. BIEBERBACH'S mono- graph Analytisehe Fortsetzung (Ergebnisse der Mathematik, new series, no. 3) can be regarded as a study of this problem for the special choice Pn (z) = zn, and illustrates the depth and detail which such a specializa- tion allows. However, the wealth of available information about other sets of polynomials has seldom been put to work in this connection (the application of generating relations to expansion of functions is not even mentioned in the Bateman compendia). At the other extreme, J. M.</abstract><pub>Springer</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9783540031239
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9783642878879
source Springer Books
title Polynomial Expansions of Analytic Functions: Reihe: Moderne Funktionentheorie
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-askewsholts&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Polynomial%20Expansions%20of%20Analytic%20Functions:%20Reihe:%20Moderne%20Funktionentheorie&rft.au=Boas,%20Ralph%20P.Jr&rft.date=2012-12-06&rft.volume=19&rft.isbn=9783540031239&rft.isbn_list=3540031235&rft_id=info:doi/&rft_dat=%3Caskewsholts%3E9783642878879%3C/askewsholts%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642878879&rft.eisbn_list=3642878873&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true