Guts of Surfaces and the Colored Jones Polynomial

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Futer, David
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 2069
creator Futer, David
description This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.
doi_str_mv 10.1007/978-3-642-33302-6
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783642333026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3070786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a46701-f0a9a67d5027166c839239b07d418bd01f891d8d59446234b1e1caa11cd727883</originalsourceid><addsrcrecordid>eNpdkMlOwzAURc0oqtIPYBexQSxMPcXDEqJSQJVAArG1nNhpQ01c4hTE35M0bOBtLB2fe6X3ADjD6AojJKZKSEghZwRSShGBfA9MOkY7sgN8H4wwxwIqrsjBv79DMOo6UigZZcdgJAmRXKpUnYBJjG-oG0kxk2wE8HzbxiSUyfO2KU3hYmJqm7Qrl2TBh8bZ5CHUHX0K_rsO75Xxp-CoND66ye87Bq-3s5fsDi4e5_fZ9QIaxgXCsERGGS5siojAnBeSKkJVjoRlWOYW4VIqbKVNFWOcUJZjhwtjMC6sIEJKOgaXQ7GJa_cVV8G3UX96l4ewjvrPvp07Hdy4aap66Ro9WBjp_pq9ranufL0L6D5xMSQ2TfjYutjqXXHh6rYxXs9uMooEErI3zwezMNH4qq70e6jDsjGbVdQpQ4ogSn8AKE11QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3070786</pqid></control><display><type>book</type><title>Guts of Surfaces and the Colored Jones Polynomial</title><source>Springer Books</source><creator>Futer, David</creator><contributor>Kalfagianni, Efstratia ; Purcell, Jessica</contributor><creatorcontrib>Futer, David ; Kalfagianni, Efstratia ; Purcell, Jessica</creatorcontrib><description>This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.</description><edition>2013</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783642333026</identifier><identifier>ISBN: 3642333028</identifier><identifier>ISBN: 9783642333019</identifier><identifier>ISBN: 364233301X</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783642333026</identifier><identifier>EISBN: 3642333028</identifier><identifier>DOI: 10.1007/978-3-642-33302-6</identifier><identifier>OCLC: 822868959</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Nature</publisher><subject>Hyperbolic Geometry ; Knot polynomials ; Knot theory ; Manifolds and Cell Complexes (incl. Diff.Topology) ; Mathematics ; Mathematics and Statistics ; Topology</subject><creationdate>2013</creationdate><tpages>178</tpages><format>178</format><rights>Springer-Verlag Berlin Heidelberg 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-642-33302-6</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-33302-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27904,38234,42490</link.rule.ids></links><search><contributor>Kalfagianni, Efstratia</contributor><contributor>Purcell, Jessica</contributor><creatorcontrib>Futer, David</creatorcontrib><title>Guts of Surfaces and the Colored Jones Polynomial</title><description>This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.</description><subject>Hyperbolic Geometry</subject><subject>Knot polynomials</subject><subject>Knot theory</subject><subject>Manifolds and Cell Complexes (incl. Diff.Topology)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topology</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783642333026</isbn><isbn>3642333028</isbn><isbn>9783642333019</isbn><isbn>364233301X</isbn><isbn>9783642333026</isbn><isbn>3642333028</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2013</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkMlOwzAURc0oqtIPYBexQSxMPcXDEqJSQJVAArG1nNhpQ01c4hTE35M0bOBtLB2fe6X3ADjD6AojJKZKSEghZwRSShGBfA9MOkY7sgN8H4wwxwIqrsjBv79DMOo6UigZZcdgJAmRXKpUnYBJjG-oG0kxk2wE8HzbxiSUyfO2KU3hYmJqm7Qrl2TBh8bZ5CHUHX0K_rsO75Xxp-CoND66ye87Bq-3s5fsDi4e5_fZ9QIaxgXCsERGGS5siojAnBeSKkJVjoRlWOYW4VIqbKVNFWOcUJZjhwtjMC6sIEJKOgaXQ7GJa_cVV8G3UX96l4ewjvrPvp07Hdy4aap66Ro9WBjp_pq9ranufL0L6D5xMSQ2TfjYutjqXXHh6rYxXs9uMooEErI3zwezMNH4qq70e6jDsjGbVdQpQ4ogSn8AKE11QA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Futer, David</creator><general>Springer Nature</general><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2013</creationdate><title>Guts of Surfaces and the Colored Jones Polynomial</title><author>Futer, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a46701-f0a9a67d5027166c839239b07d418bd01f891d8d59446234b1e1caa11cd727883</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Hyperbolic Geometry</topic><topic>Knot polynomials</topic><topic>Knot theory</topic><topic>Manifolds and Cell Complexes (incl. Diff.Topology)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Futer, David</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futer, David</au><au>Kalfagianni, Efstratia</au><au>Purcell, Jessica</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Guts of Surfaces and the Colored Jones Polynomial</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2013</date><risdate>2013</risdate><volume>2069</volume><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783642333026</isbn><isbn>3642333028</isbn><isbn>9783642333019</isbn><isbn>364233301X</isbn><eisbn>9783642333026</eisbn><eisbn>3642333028</eisbn><abstract>This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Nature</pub><doi>10.1007/978-3-642-33302-6</doi><oclcid>822868959</oclcid><tpages>178</tpages><edition>2013</edition></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof
issn 0075-8434
1617-9692
language eng
recordid cdi_askewsholts_vlebooks_9783642333026
source Springer Books
subjects Hyperbolic Geometry
Knot polynomials
Knot theory
Manifolds and Cell Complexes (incl. Diff.Topology)
Mathematics
Mathematics and Statistics
Topology
title Guts of Surfaces and the Colored Jones Polynomial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Guts%20of%20Surfaces%20and%20the%20Colored%20Jones%20Polynomial&rft.au=Futer,%20David&rft.date=2013&rft.volume=2069&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783642333026&rft.isbn_list=3642333028&rft.isbn_list=9783642333019&rft.isbn_list=364233301X&rft_id=info:doi/10.1007/978-3-642-33302-6&rft_dat=%3Cproquest_askew%3EEBC3070786%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642333026&rft.eisbn_list=3642333028&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3070786&rft_id=info:pmid/&rfr_iscdi=true