Nonparametric and Semiparametric Models
The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibilit...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Härdle, Wolfgang Karl Müller, Marlene Sperlich, Stefan Werwatz, Axel |
description | The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity. |
doi_str_mv | 10.1007/978-3-642-17146-8 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783642171468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</originalsourceid><addsrcrecordid>eNp9kMtOw0AMRQdBEaX0A1jRXcUi1Mm8l1CVh1RgAWI7miQODU2TkglF_D3TBCGQECvL1_ceWybkOISzEEBOtFQBDQSLglCGTARqhwy9Rr3SCmr3uxcRSKH2SB9CGQWSatkjhxEA41yAYvukrynTUmspDsjQuRcACCMfZqpPxndVuba1XWFT58nIlunoAVf5D-m2SrFwR6SX2cLh8KsOyNPl7HF6Hczvr26m5_PAUq4FD6RfGYWoJGMpBcvBguYc4iTOBEUOIrEplxz9TCFTLIpVKhGVgEToDDI6IKcd2LolvrtFVTTObAqMq2rpzK8XeO9J58WkKnNn1nW-svWHof4KyVTrmHQO52flM9am44Rgtm_e8gw1nmhapNkmxB8JWyeLfIP_B8ddcF1Xr2_oGtPenGDZ1LYws4spBSUl0_QTeXCDIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3087749</pqid></control><display><type>book</type><title>Nonparametric and Semiparametric Models</title><source>Springer Books</source><creator>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel</creator><creatorcontrib>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel ; SpringerLink (Online service)</creatorcontrib><description>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</description><edition>1</edition><identifier>ISSN: 0172-7397</identifier><identifier>ISBN: 9783642620768</identifier><identifier>ISBN: 3642620760</identifier><identifier>ISBN: 3540207228</identifier><identifier>ISBN: 3642171478</identifier><identifier>ISBN: 9783540207221</identifier><identifier>ISBN: 9783642171475</identifier><identifier>EISBN: 9783642171468</identifier><identifier>EISBN: 364217146X</identifier><identifier>DOI: 10.1007/978-3-642-17146-8</identifier><identifier>OCLC: 934979976</identifier><identifier>LCCN: 2004556084</identifier><identifier>EAN: 9783540207221</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Deutschland ; Distribution (Probability theory ; Econometrics ; Mathematical statistics ; Mathematics ; Mathematics and Statistics ; Nichtparametrisches Verfahren ; Nonparametric statistics ; Probability Theory and Stochastic Processes ; Smoothing ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Statistische Methodenlehre ; Theorie ; Zeitreihenanalyse</subject><creationdate>2004</creationdate><tpages>316</tpages><format>316</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</citedby><relation>Springer Series in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-642-17146-8</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-642-17146-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-17146-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,780,784,786,4046,24779,27924,38254,41441,42510</link.rule.ids></links><search><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><creatorcontrib>Müller, Marlene</creatorcontrib><creatorcontrib>Sperlich, Stefan</creatorcontrib><creatorcontrib>Werwatz, Axel</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Nonparametric and Semiparametric Models</title><description>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</description><subject>Deutschland</subject><subject>Distribution (Probability theory</subject><subject>Econometrics</subject><subject>Mathematical statistics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nichtparametrisches Verfahren</subject><subject>Nonparametric statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Smoothing</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Statistische Methodenlehre</subject><subject>Theorie</subject><subject>Zeitreihenanalyse</subject><issn>0172-7397</issn><isbn>9783642620768</isbn><isbn>3642620760</isbn><isbn>3540207228</isbn><isbn>3642171478</isbn><isbn>9783540207221</isbn><isbn>9783642171475</isbn><isbn>9783642171468</isbn><isbn>364217146X</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2004</creationdate><recordtype>book</recordtype><recordid>eNp9kMtOw0AMRQdBEaX0A1jRXcUi1Mm8l1CVh1RgAWI7miQODU2TkglF_D3TBCGQECvL1_ceWybkOISzEEBOtFQBDQSLglCGTARqhwy9Rr3SCmr3uxcRSKH2SB9CGQWSatkjhxEA41yAYvukrynTUmspDsjQuRcACCMfZqpPxndVuba1XWFT58nIlunoAVf5D-m2SrFwR6SX2cLh8KsOyNPl7HF6Hczvr26m5_PAUq4FD6RfGYWoJGMpBcvBguYc4iTOBEUOIrEplxz9TCFTLIpVKhGVgEToDDI6IKcd2LolvrtFVTTObAqMq2rpzK8XeO9J58WkKnNn1nW-svWHof4KyVTrmHQO52flM9am44Rgtm_e8gw1nmhapNkmxB8JWyeLfIP_B8ddcF1Xr2_oGtPenGDZ1LYws4spBSUl0_QTeXCDIA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Härdle, Wolfgang Karl</creator><creator>Müller, Marlene</creator><creator>Sperlich, Stefan</creator><creator>Werwatz, Axel</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>OQ6</scope></search><sort><creationdate>2004</creationdate><title>Nonparametric and Semiparametric Models</title><author>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Deutschland</topic><topic>Distribution (Probability theory</topic><topic>Econometrics</topic><topic>Mathematical statistics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nichtparametrisches Verfahren</topic><topic>Nonparametric statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Smoothing</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Statistische Methodenlehre</topic><topic>Theorie</topic><topic>Zeitreihenanalyse</topic><toplevel>online_resources</toplevel><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><creatorcontrib>Müller, Marlene</creatorcontrib><creatorcontrib>Sperlich, Stefan</creatorcontrib><creatorcontrib>Werwatz, Axel</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Härdle, Wolfgang Karl</au><au>Müller, Marlene</au><au>Sperlich, Stefan</au><au>Werwatz, Axel</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Nonparametric and Semiparametric Models</btitle><seriestitle>Springer Series in Statistics</seriestitle><date>2004</date><risdate>2004</risdate><issn>0172-7397</issn><isbn>9783642620768</isbn><isbn>3642620760</isbn><isbn>3540207228</isbn><isbn>3642171478</isbn><isbn>9783540207221</isbn><isbn>9783642171475</isbn><eisbn>9783642171468</eisbn><eisbn>364217146X</eisbn><abstract>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-642-17146-8</doi><oclcid>934979976</oclcid><tpages>316</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-7397 |
ispartof | |
issn | 0172-7397 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783642171468 |
source | Springer Books |
subjects | Deutschland Distribution (Probability theory Econometrics Mathematical statistics Mathematics Mathematics and Statistics Nichtparametrisches Verfahren Nonparametric statistics Probability Theory and Stochastic Processes Smoothing Statistical Theory and Methods Statistics Statistics for Business, Management, Economics, Finance, Insurance Statistische Methodenlehre Theorie Zeitreihenanalyse |
title | Nonparametric and Semiparametric Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Nonparametric%20and%20Semiparametric%20Models&rft.au=H%C3%A4rdle,%20Wolfgang%20Karl&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2004&rft.issn=0172-7397&rft.isbn=9783642620768&rft.isbn_list=3642620760&rft.isbn_list=3540207228&rft.isbn_list=3642171478&rft.isbn_list=9783540207221&rft.isbn_list=9783642171475&rft_id=info:doi/10.1007/978-3-642-17146-8&rft_dat=%3Cproquest_askew%3EEBC3087749%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642171468&rft.eisbn_list=364217146X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087749&rft_id=info:pmid/&rfr_iscdi=true |