Nonparametric and Semiparametric Models

The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Härdle, Wolfgang Karl, Müller, Marlene, Sperlich, Stefan, Werwatz, Axel
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Härdle, Wolfgang Karl
Müller, Marlene
Sperlich, Stefan
Werwatz, Axel
description The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
doi_str_mv 10.1007/978-3-642-17146-8
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783642171468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</originalsourceid><addsrcrecordid>eNp9kMtOw0AMRQdBEaX0A1jRXcUi1Mm8l1CVh1RgAWI7miQODU2TkglF_D3TBCGQECvL1_ceWybkOISzEEBOtFQBDQSLglCGTARqhwy9Rr3SCmr3uxcRSKH2SB9CGQWSatkjhxEA41yAYvukrynTUmspDsjQuRcACCMfZqpPxndVuba1XWFT58nIlunoAVf5D-m2SrFwR6SX2cLh8KsOyNPl7HF6Hczvr26m5_PAUq4FD6RfGYWoJGMpBcvBguYc4iTOBEUOIrEplxz9TCFTLIpVKhGVgEToDDI6IKcd2LolvrtFVTTObAqMq2rpzK8XeO9J58WkKnNn1nW-svWHof4KyVTrmHQO52flM9am44Rgtm_e8gw1nmhapNkmxB8JWyeLfIP_B8ddcF1Xr2_oGtPenGDZ1LYws4spBSUl0_QTeXCDIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3087749</pqid></control><display><type>book</type><title>Nonparametric and Semiparametric Models</title><source>Springer Books</source><creator>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel</creator><creatorcontrib>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel ; SpringerLink (Online service)</creatorcontrib><description>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</description><edition>1</edition><identifier>ISSN: 0172-7397</identifier><identifier>ISBN: 9783642620768</identifier><identifier>ISBN: 3642620760</identifier><identifier>ISBN: 3540207228</identifier><identifier>ISBN: 3642171478</identifier><identifier>ISBN: 9783540207221</identifier><identifier>ISBN: 9783642171475</identifier><identifier>EISBN: 9783642171468</identifier><identifier>EISBN: 364217146X</identifier><identifier>DOI: 10.1007/978-3-642-17146-8</identifier><identifier>OCLC: 934979976</identifier><identifier>LCCN: 2004556084</identifier><identifier>EAN: 9783540207221</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Deutschland ; Distribution (Probability theory ; Econometrics ; Mathematical statistics ; Mathematics ; Mathematics and Statistics ; Nichtparametrisches Verfahren ; Nonparametric statistics ; Probability Theory and Stochastic Processes ; Smoothing ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Statistische Methodenlehre ; Theorie ; Zeitreihenanalyse</subject><creationdate>2004</creationdate><tpages>316</tpages><format>316</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</citedby><relation>Springer Series in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-642-17146-8</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-642-17146-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-17146-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,780,784,786,4046,24779,27924,38254,41441,42510</link.rule.ids></links><search><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><creatorcontrib>Müller, Marlene</creatorcontrib><creatorcontrib>Sperlich, Stefan</creatorcontrib><creatorcontrib>Werwatz, Axel</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Nonparametric and Semiparametric Models</title><description>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</description><subject>Deutschland</subject><subject>Distribution (Probability theory</subject><subject>Econometrics</subject><subject>Mathematical statistics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nichtparametrisches Verfahren</subject><subject>Nonparametric statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Smoothing</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Statistische Methodenlehre</subject><subject>Theorie</subject><subject>Zeitreihenanalyse</subject><issn>0172-7397</issn><isbn>9783642620768</isbn><isbn>3642620760</isbn><isbn>3540207228</isbn><isbn>3642171478</isbn><isbn>9783540207221</isbn><isbn>9783642171475</isbn><isbn>9783642171468</isbn><isbn>364217146X</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2004</creationdate><recordtype>book</recordtype><recordid>eNp9kMtOw0AMRQdBEaX0A1jRXcUi1Mm8l1CVh1RgAWI7miQODU2TkglF_D3TBCGQECvL1_ceWybkOISzEEBOtFQBDQSLglCGTARqhwy9Rr3SCmr3uxcRSKH2SB9CGQWSatkjhxEA41yAYvukrynTUmspDsjQuRcACCMfZqpPxndVuba1XWFT58nIlunoAVf5D-m2SrFwR6SX2cLh8KsOyNPl7HF6Hczvr26m5_PAUq4FD6RfGYWoJGMpBcvBguYc4iTOBEUOIrEplxz9TCFTLIpVKhGVgEToDDI6IKcd2LolvrtFVTTObAqMq2rpzK8XeO9J58WkKnNn1nW-svWHof4KyVTrmHQO52flM9am44Rgtm_e8gw1nmhapNkmxB8JWyeLfIP_B8ddcF1Xr2_oGtPenGDZ1LYws4spBSUl0_QTeXCDIA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Härdle, Wolfgang Karl</creator><creator>Müller, Marlene</creator><creator>Sperlich, Stefan</creator><creator>Werwatz, Axel</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>OQ6</scope></search><sort><creationdate>2004</creationdate><title>Nonparametric and Semiparametric Models</title><author>Härdle, Wolfgang Karl ; Müller, Marlene ; Sperlich, Stefan ; Werwatz, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a35965-760821e8744d30a50a09550bcbf63e506cad575e30a8e4842b8d7ee860c69f0f3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Deutschland</topic><topic>Distribution (Probability theory</topic><topic>Econometrics</topic><topic>Mathematical statistics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nichtparametrisches Verfahren</topic><topic>Nonparametric statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Smoothing</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Statistische Methodenlehre</topic><topic>Theorie</topic><topic>Zeitreihenanalyse</topic><toplevel>online_resources</toplevel><creatorcontrib>Härdle, Wolfgang Karl</creatorcontrib><creatorcontrib>Müller, Marlene</creatorcontrib><creatorcontrib>Sperlich, Stefan</creatorcontrib><creatorcontrib>Werwatz, Axel</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Härdle, Wolfgang Karl</au><au>Müller, Marlene</au><au>Sperlich, Stefan</au><au>Werwatz, Axel</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Nonparametric and Semiparametric Models</btitle><seriestitle>Springer Series in Statistics</seriestitle><date>2004</date><risdate>2004</risdate><issn>0172-7397</issn><isbn>9783642620768</isbn><isbn>3642620760</isbn><isbn>3540207228</isbn><isbn>3642171478</isbn><isbn>9783540207221</isbn><isbn>9783642171475</isbn><eisbn>9783642171468</eisbn><eisbn>364217146X</eisbn><abstract>The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression. The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables. The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given. The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-642-17146-8</doi><oclcid>934979976</oclcid><tpages>316</tpages><edition>1</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0172-7397
ispartof
issn 0172-7397
language eng
recordid cdi_askewsholts_vlebooks_9783642171468
source Springer Books
subjects Deutschland
Distribution (Probability theory
Econometrics
Mathematical statistics
Mathematics
Mathematics and Statistics
Nichtparametrisches Verfahren
Nonparametric statistics
Probability Theory and Stochastic Processes
Smoothing
Statistical Theory and Methods
Statistics
Statistics for Business, Management, Economics, Finance, Insurance
Statistische Methodenlehre
Theorie
Zeitreihenanalyse
title Nonparametric and Semiparametric Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Nonparametric%20and%20Semiparametric%20Models&rft.au=H%C3%A4rdle,%20Wolfgang%20Karl&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2004&rft.issn=0172-7397&rft.isbn=9783642620768&rft.isbn_list=3642620760&rft.isbn_list=3540207228&rft.isbn_list=3642171478&rft.isbn_list=9783540207221&rft.isbn_list=9783642171475&rft_id=info:doi/10.1007/978-3-642-17146-8&rft_dat=%3Cproquest_askew%3EEBC3087749%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642171468&rft.eisbn_list=364217146X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087749&rft_id=info:pmid/&rfr_iscdi=true