Computational Discovery of Scientific Knowledge: Introduction, Techniques, and Applications in Environmental and Life Sciences

Advances in technology have enabled the collection of data from scientific observations, simulations, and experiments at an ever-increasing pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carbonell, Jaime G, Siekmann, Jörg, D√eroski, Sa∫o
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 4660
creator Carbonell, Jaime G
Siekmann, Jörg
D√eroski, Sa∫o
description Advances in technology have enabled the collection of data from scientific observations, simulations, and experiments at an ever-increasing pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they focus on applying computational methods to automate scientific activities, such as finding laws from observational data. In contrast to mining scientific data, which focuses on building highly predictive models, computational scientific discovery puts a strong emphasis on discovering knowledge represented in formalisms used by scientists and engineers, such as numeric equations and reaction pathways. This state-of-the-art survey provides an introduction to computational approaches to the discovery of scientific knowledge and gives an overview of recent advances in this area, including techniques and applications in environmental and life sciences. The 15 articles presented are partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001. More representative coverage of recent research in computational scientific discovery is achieved by a significant number of additional invited contributions.
doi_str_mv 10.1007/978-3-540-73920-3
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540739203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6413334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a51573-e0bda58bd566698a65867e80bb1d2b122b3621d7957ebcbc0604d929321b7d5d3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhM1TVKU_gFtuiIPp2hvb8RFCeYhKHEBcrThxS2iIS5y24t-TNhzgxl5WmvlmpR1CzhhcMgA11iqhSEUMVKHmQHGPjDoNO2Un4D4ZMMkYRYz1wW-PaXVIBoDAqVYxHnecgq0n4ISMQniHbpBJJeMBGaf-Y7lqs7b0dVZFN2XI_do1X5GfRc956eq2nJV59Fj7TeWKuTslR7OsCm70s4fk9Xbykt7T6dPdQ3o1pZlgQiF1YItMJLYQUkqdZFIkUrkErGUFt4xzi5KzQmmhnM1tDhLiQnONnFlViAKH5KI_nIWF24Q3X7XBrCtnvV8E86eJjh33bFg2ZT13jekpBmbb5ZY2aDre7AJmmzjvE8vGf65caM3ucN7922SVmVynMmbYVfsPEkEihwS_Afrud8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3063208</pqid></control><display><type>book</type><title>Computational Discovery of Scientific Knowledge: Introduction, Techniques, and Applications in Environmental and Life Sciences</title><source>Springer Books</source><creator>Carbonell, Jaime G ; Siekmann, Jörg ; D√eroski, Sa∫o</creator><contributor>Todorovski, Ljupčo ; Džeroski, Sašo</contributor><creatorcontrib>Carbonell, Jaime G ; Siekmann, Jörg ; D√eroski, Sa∫o ; Todorovski, Ljupčo ; Džeroski, Sašo</creatorcontrib><description>Advances in technology have enabled the collection of data from scientific observations, simulations, and experiments at an ever-increasing pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they focus on applying computational methods to automate scientific activities, such as finding laws from observational data. In contrast to mining scientific data, which focuses on building highly predictive models, computational scientific discovery puts a strong emphasis on discovering knowledge represented in formalisms used by scientists and engineers, such as numeric equations and reaction pathways. This state-of-the-art survey provides an introduction to computational approaches to the discovery of scientific knowledge and gives an overview of recent advances in this area, including techniques and applications in environmental and life sciences. The 15 articles presented are partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001. More representative coverage of recent research in computational scientific discovery is achieved by a significant number of additional invited contributions.</description><edition>2007 edition.</edition><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540739197</identifier><identifier>ISBN: 354073919X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540739203</identifier><identifier>EISBN: 3540739203</identifier><identifier>DOI: 10.1007/978-3-540-73920-3</identifier><identifier>OCLC: 170354050</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Artificial Intelligence ; Automation ; Biology ; Computational learning theory ; Computer Science ; Congresses ; Cultural and Media Studies ; Data Mining and Knowledge Discovery ; Data processing ; Database Management ; Discoveries in science ; Electronic data processing ; Information Storage and Retrieval ; Library Science ; Medicine ; Pattern Recognition ; Science ; Science-Data processing-Congresses</subject><creationdate>2007</creationdate><tpages>332</tpages><format>332</format><rights>Springer-Verlag Berlin Heidelberg 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-73920-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-73920-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><contributor>Todorovski, Ljupčo</contributor><contributor>Džeroski, Sašo</contributor><creatorcontrib>Carbonell, Jaime G</creatorcontrib><creatorcontrib>Siekmann, Jörg</creatorcontrib><creatorcontrib>D√eroski, Sa∫o</creatorcontrib><title>Computational Discovery of Scientific Knowledge: Introduction, Techniques, and Applications in Environmental and Life Sciences</title><description>Advances in technology have enabled the collection of data from scientific observations, simulations, and experiments at an ever-increasing pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they focus on applying computational methods to automate scientific activities, such as finding laws from observational data. In contrast to mining scientific data, which focuses on building highly predictive models, computational scientific discovery puts a strong emphasis on discovering knowledge represented in formalisms used by scientists and engineers, such as numeric equations and reaction pathways. This state-of-the-art survey provides an introduction to computational approaches to the discovery of scientific knowledge and gives an overview of recent advances in this area, including techniques and applications in environmental and life sciences. The 15 articles presented are partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001. More representative coverage of recent research in computational scientific discovery is achieved by a significant number of additional invited contributions.</description><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biology</subject><subject>Computational learning theory</subject><subject>Computer Science</subject><subject>Congresses</subject><subject>Cultural and Media Studies</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data processing</subject><subject>Database Management</subject><subject>Discoveries in science</subject><subject>Electronic data processing</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Medicine</subject><subject>Pattern Recognition</subject><subject>Science</subject><subject>Science-Data processing-Congresses</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540739197</isbn><isbn>354073919X</isbn><isbn>9783540739203</isbn><isbn>3540739203</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2007</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNqNkEtPwzAQhM1TVKU_gFtuiIPp2hvb8RFCeYhKHEBcrThxS2iIS5y24t-TNhzgxl5WmvlmpR1CzhhcMgA11iqhSEUMVKHmQHGPjDoNO2Un4D4ZMMkYRYz1wW-PaXVIBoDAqVYxHnecgq0n4ISMQniHbpBJJeMBGaf-Y7lqs7b0dVZFN2XI_do1X5GfRc956eq2nJV59Fj7TeWKuTslR7OsCm70s4fk9Xbykt7T6dPdQ3o1pZlgQiF1YItMJLYQUkqdZFIkUrkErGUFt4xzi5KzQmmhnM1tDhLiQnONnFlViAKH5KI_nIWF24Q3X7XBrCtnvV8E86eJjh33bFg2ZT13jekpBmbb5ZY2aDre7AJmmzjvE8vGf65caM3ucN7922SVmVynMmbYVfsPEkEihwS_Afrud8c</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Carbonell, Jaime G</creator><creator>Siekmann, Jörg</creator><creator>D√eroski, Sa∫o</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2007</creationdate><title>Computational Discovery of Scientific Knowledge</title><author>Carbonell, Jaime G ; Siekmann, Jörg ; D√eroski, Sa∫o</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a51573-e0bda58bd566698a65867e80bb1d2b122b3621d7957ebcbc0604d929321b7d5d3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biology</topic><topic>Computational learning theory</topic><topic>Computer Science</topic><topic>Congresses</topic><topic>Cultural and Media Studies</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data processing</topic><topic>Database Management</topic><topic>Discoveries in science</topic><topic>Electronic data processing</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Medicine</topic><topic>Pattern Recognition</topic><topic>Science</topic><topic>Science-Data processing-Congresses</topic><toplevel>online_resources</toplevel><creatorcontrib>Carbonell, Jaime G</creatorcontrib><creatorcontrib>Siekmann, Jörg</creatorcontrib><creatorcontrib>D√eroski, Sa∫o</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbonell, Jaime G</au><au>Siekmann, Jörg</au><au>D√eroski, Sa∫o</au><au>Todorovski, Ljupčo</au><au>Džeroski, Sašo</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Computational Discovery of Scientific Knowledge: Introduction, Techniques, and Applications in Environmental and Life Sciences</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2007</date><risdate>2007</risdate><volume>4660</volume><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540739197</isbn><isbn>354073919X</isbn><eisbn>9783540739203</eisbn><eisbn>3540739203</eisbn><abstract>Advances in technology have enabled the collection of data from scientific observations, simulations, and experiments at an ever-increasing pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they focus on applying computational methods to automate scientific activities, such as finding laws from observational data. In contrast to mining scientific data, which focuses on building highly predictive models, computational scientific discovery puts a strong emphasis on discovering knowledge represented in formalisms used by scientists and engineers, such as numeric equations and reaction pathways. This state-of-the-art survey provides an introduction to computational approaches to the discovery of scientific knowledge and gives an overview of recent advances in this area, including techniques and applications in environmental and life sciences. The 15 articles presented are partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001. More representative coverage of recent research in computational scientific discovery is achieved by a significant number of additional invited contributions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-73920-3</doi><oclcid>170354050</oclcid><tpages>332</tpages><edition>2007 edition.</edition></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof
issn 0302-9743
1611-3349
language eng
recordid cdi_askewsholts_vlebooks_9783540739203
source Springer Books
subjects Artificial Intelligence
Automation
Biology
Computational learning theory
Computer Science
Congresses
Cultural and Media Studies
Data Mining and Knowledge Discovery
Data processing
Database Management
Discoveries in science
Electronic data processing
Information Storage and Retrieval
Library Science
Medicine
Pattern Recognition
Science
Science-Data processing-Congresses
title Computational Discovery of Scientific Knowledge: Introduction, Techniques, and Applications in Environmental and Life Sciences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Computational%20Discovery%20of%20Scientific%20Knowledge:%20Introduction,%20Techniques,%20and%20Applications%20in%20Environmental%20and%20Life%20Sciences&rft.au=Carbonell,%20Jaime%20G&rft.date=2007&rft.volume=4660&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540739197&rft.isbn_list=354073919X&rft_id=info:doi/10.1007/978-3-540-73920-3&rft_dat=%3Cproquest_askew%3EEBC6413334%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540739203&rft.eisbn_list=3540739203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3063208&rft_id=info:pmid/&rfr_iscdi=true