Large-Time Behavior of Solutions of Linear Dispersive Equations

This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dix, Daniel B
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 1668
creator Dix, Daniel B
description This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estimates are proved. Using the method of steepest descent much new information on the regularity and spatial asymptotics of the solutions are also obtained. Applications to nonlinear dispersive equations are discussed. This monograph is intended for researchers and graduate students of partial differential equations. Familiarity with basic asymptotic, complex and Fourier analysis is assumed.
doi_str_mv 10.1007/BFb0093368
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540695455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5610765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a49260-500d671af5cc9e9a0ebd1855fd9d876ef72967bd5230e7a262624267b423bf123</originalsourceid><addsrcrecordid>eNqNkctOwzAQRc1TtKUbviA7YBE6fscrREsLSJFYULGNnMRpA6Fp7bT8Pm5TwQYk5MXozpxrea4RusBwgwHkYDhJARSlIjpAXcoZCMUZx4eogwWWoRKKHO0HlFEmj1HH23gYeXGKuhikAqCEszPUd-4NYKsYxVEH3cbazkw4LT9MMDRzvSlrG9RF8FJX66asF24r4nJhtA3uS7c01pUbE4xXa70bn6OTQlfO9Pe1h14n4-noMYyfH55Gd3GomSICQg6QC4l1wbNMGaXBpDmOOC9ylUdSmEISJWSac0LBSE2EP4z4DiM0LTChPXTdXqzdu_l087pqXLKpTFrX7y5RMvrOhXv2qmXd0paLmbFJS2FItnkmP3l6dPALqm0292v-4bhsHUtbr9bGNcnuDZlZNFZXyXg48nsCZ_8hufB_Izj9AlR7iIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5610765</pqid></control><display><type>book</type><title>Large-Time Behavior of Solutions of Linear Dispersive Equations</title><source>Springer Books</source><creator>Dix, Daniel B</creator><creatorcontrib>Dix, Daniel B ; SpringerLink (Online service)</creatorcontrib><description>This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estimates are proved. Using the method of steepest descent much new information on the regularity and spatial asymptotics of the solutions are also obtained. Applications to nonlinear dispersive equations are discussed. This monograph is intended for researchers and graduate students of partial differential equations. Familiarity with basic asymptotic, complex and Fourier analysis is assumed.</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540634347</identifier><identifier>ISBN: 9783540634348</identifier><identifier>ISBN: 9783662201893</identifier><identifier>ISBN: 3662201895</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540695451</identifier><identifier>EISBN: 9783540695455</identifier><identifier>DOI: 10.1007/BFb0093368</identifier><identifier>OCLC: 1079003254</identifier><identifier>OCLC: 1265461929</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Analysis ; Asymptotic expansions ; Differential equations, Linear ; Differential equations, partial ; Fourier Analysis ; Global analysis (Mathematics) ; Initial value problems ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><creationdate>2006</creationdate><tpages>217</tpages><format>217</format><rights>Springer-Verlag Berlin Heidelberg 1997</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-69545-5</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0093368$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0093368$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,41418,42487</link.rule.ids></links><search><creatorcontrib>Dix, Daniel B</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Large-Time Behavior of Solutions of Linear Dispersive Equations</title><description>This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estimates are proved. Using the method of steepest descent much new information on the regularity and spatial asymptotics of the solutions are also obtained. Applications to nonlinear dispersive equations are discussed. This monograph is intended for researchers and graduate students of partial differential equations. Familiarity with basic asymptotic, complex and Fourier analysis is assumed.</description><subject>Analysis</subject><subject>Asymptotic expansions</subject><subject>Differential equations, Linear</subject><subject>Differential equations, partial</subject><subject>Fourier Analysis</subject><subject>Global analysis (Mathematics)</subject><subject>Initial value problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>3540634347</isbn><isbn>9783540634348</isbn><isbn>9783662201893</isbn><isbn>3662201895</isbn><isbn>3540695451</isbn><isbn>9783540695455</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2006</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNqNkctOwzAQRc1TtKUbviA7YBE6fscrREsLSJFYULGNnMRpA6Fp7bT8Pm5TwQYk5MXozpxrea4RusBwgwHkYDhJARSlIjpAXcoZCMUZx4eogwWWoRKKHO0HlFEmj1HH23gYeXGKuhikAqCEszPUd-4NYKsYxVEH3cbazkw4LT9MMDRzvSlrG9RF8FJX66asF24r4nJhtA3uS7c01pUbE4xXa70bn6OTQlfO9Pe1h14n4-noMYyfH55Gd3GomSICQg6QC4l1wbNMGaXBpDmOOC9ylUdSmEISJWSac0LBSE2EP4z4DiM0LTChPXTdXqzdu_l087pqXLKpTFrX7y5RMvrOhXv2qmXd0paLmbFJS2FItnkmP3l6dPALqm0292v-4bhsHUtbr9bGNcnuDZlZNFZXyXg48nsCZ_8hufB_Izj9AlR7iIo</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Dix, Daniel B</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2006</creationdate><title>Large-Time Behavior of Solutions of Linear Dispersive Equations</title><author>Dix, Daniel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a49260-500d671af5cc9e9a0ebd1855fd9d876ef72967bd5230e7a262624267b423bf123</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analysis</topic><topic>Asymptotic expansions</topic><topic>Differential equations, Linear</topic><topic>Differential equations, partial</topic><topic>Fourier Analysis</topic><topic>Global analysis (Mathematics)</topic><topic>Initial value problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Dix, Daniel B</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dix, Daniel B</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Large-Time Behavior of Solutions of Linear Dispersive Equations</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006</date><risdate>2006</risdate><volume>1668</volume><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>3540634347</isbn><isbn>9783540634348</isbn><isbn>9783662201893</isbn><isbn>3662201895</isbn><eisbn>3540695451</eisbn><eisbn>9783540695455</eisbn><abstract>This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estimates are proved. Using the method of steepest descent much new information on the regularity and spatial asymptotics of the solutions are also obtained. Applications to nonlinear dispersive equations are discussed. This monograph is intended for researchers and graduate students of partial differential equations. Familiarity with basic asymptotic, complex and Fourier analysis is assumed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/BFb0093368</doi><oclcid>1079003254</oclcid><oclcid>1265461929</oclcid><tpages>217</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof
issn 0075-8434
1617-9692
language eng
recordid cdi_askewsholts_vlebooks_9783540695455
source Springer Books
subjects Analysis
Asymptotic expansions
Differential equations, Linear
Differential equations, partial
Fourier Analysis
Global analysis (Mathematics)
Initial value problems
Mathematics
Mathematics and Statistics
Partial Differential Equations
title Large-Time Behavior of Solutions of Linear Dispersive Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Large-Time%20Behavior%20of%20Solutions%20of%20Linear%20Dispersive%20Equations&rft.au=Dix,%20Daniel%20B&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2006&rft.volume=1668&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=3540634347&rft.isbn_list=9783540634348&rft.isbn_list=9783662201893&rft.isbn_list=3662201895&rft_id=info:doi/10.1007/BFb0093368&rft_dat=%3Cproquest_askew%3EEBC5610765%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540695451&rft.eisbn_list=9783540695455&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5610765&rft_id=info:pmid/&rfr_iscdi=true