The Decomposition of Primes in Torsion Point Fields
It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviou...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 1761 |
creator | Adelmann, Clemens |
description | It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties. |
doi_str_mv | 10.1007/b80624 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540449492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a47270-9049a8add9ea0bac28fdf190ab8820ad72a94df6c084ec5bd611bb3d2b9607fd3</originalsourceid><addsrcrecordid>eNpt0FtLwzAUAOCIF5xz_oY-CCJSPc2lSR51bioM3MPwtSRN6uK6ZiZ1_n271RfBvBxy-Dg3hC4yuM0A-J0WkGN6gEaSC8IoUCqpxIfobP_BQBg7QoNOslRQQk_QQDLBMBEYTtEoxg_oHsGYChggslja5NGWfr3x0bXON4mvknlwaxsT1yQLH-IuOfeuaZOps7WJ5-i4UnW0o984RG_TyWL8nM5en17G97NUUY45pBKoVEIZI60CrUosKlNlEpQW3SzKcKwkNVVegqC2ZNrkWaY1MVjLHHhlyBBd94VVXNnvuPR1G4ttbbX3q1j8Wb-zl72Nm-CadxuKXmVQ7K5W9Ffr2M0_TIVy6bb2H33V603wn182tsW-d2mbNqi6mDyMCXAsJZAftANznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3072990</pqid></control><display><type>book</type><title>The Decomposition of Primes in Torsion Point Fields</title><source>Springer Books</source><creator>Adelmann, Clemens</creator><contributor>Adelmann, Clemens</contributor><creatorcontrib>Adelmann, Clemens ; SpringerLink (Online service) ; Adelmann, Clemens</creatorcontrib><description>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540420355</identifier><identifier>ISBN: 9783540420354</identifier><identifier>ISBN: 3662185202</identifier><identifier>ISBN: 9783662185209</identifier><identifier>EISBN: 9783540449492</identifier><identifier>EISBN: 3540449493</identifier><identifier>DOI: 10.1007/b80624</identifier><identifier>OCLC: 958523820</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Geometry, algebraic ; Ideals (Algebra) ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><creationdate>2001</creationdate><tpages>143</tpages><format>143</format><rights>Springer-Verlag Berlin Heidelberg 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-44949-2</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b80624$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b80624$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Adelmann, Clemens</contributor><creatorcontrib>Adelmann, Clemens</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>The Decomposition of Primes in Torsion Point Fields</title><description>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</description><subject>Algebraic Geometry</subject><subject>Geometry, algebraic</subject><subject>Ideals (Algebra)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>0075-8434</issn><isbn>3540420355</isbn><isbn>9783540420354</isbn><isbn>3662185202</isbn><isbn>9783662185209</isbn><isbn>9783540449492</isbn><isbn>3540449493</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2001</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpt0FtLwzAUAOCIF5xz_oY-CCJSPc2lSR51bioM3MPwtSRN6uK6ZiZ1_n271RfBvBxy-Dg3hC4yuM0A-J0WkGN6gEaSC8IoUCqpxIfobP_BQBg7QoNOslRQQk_QQDLBMBEYTtEoxg_oHsGYChggslja5NGWfr3x0bXON4mvknlwaxsT1yQLH-IuOfeuaZOps7WJ5-i4UnW0o984RG_TyWL8nM5en17G97NUUY45pBKoVEIZI60CrUosKlNlEpQW3SzKcKwkNVVegqC2ZNrkWaY1MVjLHHhlyBBd94VVXNnvuPR1G4ttbbX3q1j8Wb-zl72Nm-CadxuKXmVQ7K5W9Ffr2M0_TIVy6bb2H33V603wn182tsW-d2mbNqi6mDyMCXAsJZAftANznQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Adelmann, Clemens</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2001</creationdate><title>The Decomposition of Primes in Torsion Point Fields</title><author>Adelmann, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a47270-9049a8add9ea0bac28fdf190ab8820ad72a94df6c084ec5bd611bb3d2b9607fd3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebraic Geometry</topic><topic>Geometry, algebraic</topic><topic>Ideals (Algebra)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Adelmann, Clemens</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelmann, Clemens</au><au>Adelmann, Clemens</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>The Decomposition of Primes in Torsion Point Fields</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2001</date><risdate>2001</risdate><volume>1761</volume><issn>0075-8434</issn><isbn>3540420355</isbn><isbn>9783540420354</isbn><isbn>3662185202</isbn><isbn>9783662185209</isbn><eisbn>9783540449492</eisbn><eisbn>3540449493</eisbn><abstract>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/b80624</doi><oclcid>958523820</oclcid><tpages>143</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | |
issn | 0075-8434 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783540449492 |
source | Springer Books |
subjects | Algebraic Geometry Geometry, algebraic Ideals (Algebra) Mathematics Mathematics and Statistics Number Theory |
title | The Decomposition of Primes in Torsion Point Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=The%20Decomposition%20of%20Primes%20in%20Torsion%20Point%20Fields&rft.au=Adelmann,%20Clemens&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2001&rft.volume=1761&rft.issn=0075-8434&rft.isbn=3540420355&rft.isbn_list=9783540420354&rft.isbn_list=3662185202&rft.isbn_list=9783662185209&rft_id=info:doi/10.1007/b80624&rft_dat=%3Cproquest_askew%3EEBC3072990%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540449492&rft.eisbn_list=3540449493&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072990&rft_id=info:pmid/&rfr_iscdi=true |