The Decomposition of Primes in Torsion Point Fields

It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Adelmann, Clemens
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 1761
creator Adelmann, Clemens
description It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.
doi_str_mv 10.1007/b80624
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540449492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a47270-9049a8add9ea0bac28fdf190ab8820ad72a94df6c084ec5bd611bb3d2b9607fd3</originalsourceid><addsrcrecordid>eNpt0FtLwzAUAOCIF5xz_oY-CCJSPc2lSR51bioM3MPwtSRN6uK6ZiZ1_n271RfBvBxy-Dg3hC4yuM0A-J0WkGN6gEaSC8IoUCqpxIfobP_BQBg7QoNOslRQQk_QQDLBMBEYTtEoxg_oHsGYChggslja5NGWfr3x0bXON4mvknlwaxsT1yQLH-IuOfeuaZOps7WJ5-i4UnW0o984RG_TyWL8nM5en17G97NUUY45pBKoVEIZI60CrUosKlNlEpQW3SzKcKwkNVVegqC2ZNrkWaY1MVjLHHhlyBBd94VVXNnvuPR1G4ttbbX3q1j8Wb-zl72Nm-CadxuKXmVQ7K5W9Ffr2M0_TIVy6bb2H33V603wn182tsW-d2mbNqi6mDyMCXAsJZAftANznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3072990</pqid></control><display><type>book</type><title>The Decomposition of Primes in Torsion Point Fields</title><source>Springer Books</source><creator>Adelmann, Clemens</creator><contributor>Adelmann, Clemens</contributor><creatorcontrib>Adelmann, Clemens ; SpringerLink (Online service) ; Adelmann, Clemens</creatorcontrib><description>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 3540420355</identifier><identifier>ISBN: 9783540420354</identifier><identifier>ISBN: 3662185202</identifier><identifier>ISBN: 9783662185209</identifier><identifier>EISBN: 9783540449492</identifier><identifier>EISBN: 3540449493</identifier><identifier>DOI: 10.1007/b80624</identifier><identifier>OCLC: 958523820</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Geometry, algebraic ; Ideals (Algebra) ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><creationdate>2001</creationdate><tpages>143</tpages><format>143</format><rights>Springer-Verlag Berlin Heidelberg 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-44949-2</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b80624$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b80624$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Adelmann, Clemens</contributor><creatorcontrib>Adelmann, Clemens</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>The Decomposition of Primes in Torsion Point Fields</title><description>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</description><subject>Algebraic Geometry</subject><subject>Geometry, algebraic</subject><subject>Ideals (Algebra)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>0075-8434</issn><isbn>3540420355</isbn><isbn>9783540420354</isbn><isbn>3662185202</isbn><isbn>9783662185209</isbn><isbn>9783540449492</isbn><isbn>3540449493</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2001</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpt0FtLwzAUAOCIF5xz_oY-CCJSPc2lSR51bioM3MPwtSRN6uK6ZiZ1_n271RfBvBxy-Dg3hC4yuM0A-J0WkGN6gEaSC8IoUCqpxIfobP_BQBg7QoNOslRQQk_QQDLBMBEYTtEoxg_oHsGYChggslja5NGWfr3x0bXON4mvknlwaxsT1yQLH-IuOfeuaZOps7WJ5-i4UnW0o984RG_TyWL8nM5en17G97NUUY45pBKoVEIZI60CrUosKlNlEpQW3SzKcKwkNVVegqC2ZNrkWaY1MVjLHHhlyBBd94VVXNnvuPR1G4ttbbX3q1j8Wb-zl72Nm-CadxuKXmVQ7K5W9Ffr2M0_TIVy6bb2H33V603wn182tsW-d2mbNqi6mDyMCXAsJZAftANznQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Adelmann, Clemens</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2001</creationdate><title>The Decomposition of Primes in Torsion Point Fields</title><author>Adelmann, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a47270-9049a8add9ea0bac28fdf190ab8820ad72a94df6c084ec5bd611bb3d2b9607fd3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebraic Geometry</topic><topic>Geometry, algebraic</topic><topic>Ideals (Algebra)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Adelmann, Clemens</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelmann, Clemens</au><au>Adelmann, Clemens</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>The Decomposition of Primes in Torsion Point Fields</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2001</date><risdate>2001</risdate><volume>1761</volume><issn>0075-8434</issn><isbn>3540420355</isbn><isbn>9783540420354</isbn><isbn>3662185202</isbn><isbn>9783662185209</isbn><eisbn>9783540449492</eisbn><eisbn>3540449493</eisbn><abstract>It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/b80624</doi><oclcid>958523820</oclcid><tpages>143</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof
issn 0075-8434
language eng
recordid cdi_askewsholts_vlebooks_9783540449492
source Springer Books
subjects Algebraic Geometry
Geometry, algebraic
Ideals (Algebra)
Mathematics
Mathematics and Statistics
Number Theory
title The Decomposition of Primes in Torsion Point Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=The%20Decomposition%20of%20Primes%20in%20Torsion%20Point%20Fields&rft.au=Adelmann,%20Clemens&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2001&rft.volume=1761&rft.issn=0075-8434&rft.isbn=3540420355&rft.isbn_list=9783540420354&rft.isbn_list=3662185202&rft.isbn_list=9783662185209&rft_id=info:doi/10.1007/b80624&rft_dat=%3Cproquest_askew%3EEBC3072990%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540449492&rft.eisbn_list=3540449493&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072990&rft_id=info:pmid/&rfr_iscdi=true