Graphs on Surfaces and Their Applications
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 141 |
creator | Lando, Sergei K Gamkrelidze, R. V Zvonkin, Alexander K Vassiliev, V. A |
description | Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers. |
doi_str_mv | 10.1007/978-3-540-38361-1 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540383611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQho34EFXpD2DLhjqY2nH8NZaoFKRKDFSslu1eSWiUBDstf5-0YUFC3GLdq-fxnY3QLSX3lBA501JhhnlGMFNMUEzP0KTPWJ-cAno-9CJLCecpSy_QiGimMGFaXKGR4lTKNFX0Gk1i_CB9Ka20pCM0XQbbFjFp6uR1H7bWQ0xsvUnWBZQhmbdtVXrblU0db9Dl1lYRJj_nGL09Ltb5E169LJ_z-Qrbfj7n2FGuuRJKaEj9dkMsEZmTFryj3iqwHGTmhNTaZ4yDUlZttHREuEyD1cyxMZoOF9u4g69YNFUXzaEC1zS7aH69u2dnAxvbUNbvEMxAUWKOP3ekDTM9b06CORriD8MGX5QH-F-8G8Q2NJ97iJ05beSh7oKtzOIhZ0SpNBPsGx4bd7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3088246</pqid></control><display><type>book</type><title>Graphs on Surfaces and Their Applications</title><source>Springer Books</source><creator>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A</creator><creatorcontrib>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A ; SpringerLink (Online service)</creatorcontrib><description>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</description><edition>1</edition><identifier>ISSN: 0938-0396</identifier><identifier>ISBN: 9783642055232</identifier><identifier>ISBN: 3642055230</identifier><identifier>ISBN: 3540002030</identifier><identifier>ISBN: 9783540002031</identifier><identifier>ISBN: 3642535410</identifier><identifier>ISBN: 9783642535413</identifier><identifier>EISBN: 9783540383611</identifier><identifier>EISBN: 3540383611</identifier><identifier>DOI: 10.1007/978-3-540-38361-1</identifier><identifier>OCLC: 851772281</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Algorithms ; Combinatorics ; Differential equations, partial ; Geometry, algebraic ; Graph theory ; Mathematics ; Mathematics and Statistics ; Several Complex Variables and Analytic Spaces ; Surfaces ; Theoretical, Mathematical and Computational Physics ; Topology</subject><creationdate>2003</creationdate><tpages>463</tpages><format>463</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</citedby><relation>Encyclopaedia of Mathematical Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-38361-1</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-38361-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-38361-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,24778,27923,38253,41440,42509</link.rule.ids></links><search><creatorcontrib>Lando, Sergei K</creatorcontrib><creatorcontrib>Gamkrelidze, R. V</creatorcontrib><creatorcontrib>Zvonkin, Alexander K</creatorcontrib><creatorcontrib>Vassiliev, V. A</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Graphs on Surfaces and Their Applications</title><description>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</description><subject>Algebraic Geometry</subject><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Differential equations, partial</subject><subject>Geometry, algebraic</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Several Complex Variables and Analytic Spaces</subject><subject>Surfaces</subject><subject>Theoretical, Mathematical and Computational Physics</subject><subject>Topology</subject><issn>0938-0396</issn><isbn>9783642055232</isbn><isbn>3642055230</isbn><isbn>3540002030</isbn><isbn>9783540002031</isbn><isbn>3642535410</isbn><isbn>9783642535413</isbn><isbn>9783540383611</isbn><isbn>3540383611</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2003</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNp9kD1PwzAQho34EFXpD2DLhjqY2nH8NZaoFKRKDFSslu1eSWiUBDstf5-0YUFC3GLdq-fxnY3QLSX3lBA501JhhnlGMFNMUEzP0KTPWJ-cAno-9CJLCecpSy_QiGimMGFaXKGR4lTKNFX0Gk1i_CB9Ka20pCM0XQbbFjFp6uR1H7bWQ0xsvUnWBZQhmbdtVXrblU0db9Dl1lYRJj_nGL09Ltb5E169LJ_z-Qrbfj7n2FGuuRJKaEj9dkMsEZmTFryj3iqwHGTmhNTaZ4yDUlZttHREuEyD1cyxMZoOF9u4g69YNFUXzaEC1zS7aH69u2dnAxvbUNbvEMxAUWKOP3ekDTM9b06CORriD8MGX5QH-F-8G8Q2NJ97iJ05beSh7oKtzOIhZ0SpNBPsGx4bd7g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Lando, Sergei K</creator><creator>Gamkrelidze, R. V</creator><creator>Zvonkin, Alexander K</creator><creator>Vassiliev, V. A</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2003</creationdate><title>Graphs on Surfaces and Their Applications</title><author>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebraic Geometry</topic><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Differential equations, partial</topic><topic>Geometry, algebraic</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Several Complex Variables and Analytic Spaces</topic><topic>Surfaces</topic><topic>Theoretical, Mathematical and Computational Physics</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lando, Sergei K</creatorcontrib><creatorcontrib>Gamkrelidze, R. V</creatorcontrib><creatorcontrib>Zvonkin, Alexander K</creatorcontrib><creatorcontrib>Vassiliev, V. A</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lando, Sergei K</au><au>Gamkrelidze, R. V</au><au>Zvonkin, Alexander K</au><au>Vassiliev, V. A</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Graphs on Surfaces and Their Applications</btitle><seriestitle>Encyclopaedia of Mathematical Sciences</seriestitle><date>2003</date><risdate>2003</risdate><volume>141</volume><issn>0938-0396</issn><isbn>9783642055232</isbn><isbn>3642055230</isbn><isbn>3540002030</isbn><isbn>9783540002031</isbn><isbn>3642535410</isbn><isbn>9783642535413</isbn><eisbn>9783540383611</eisbn><eisbn>3540383611</eisbn><abstract>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-38361-1</doi><oclcid>851772281</oclcid><tpages>463</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-0396 |
ispartof | |
issn | 0938-0396 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783540383611 |
source | Springer Books |
subjects | Algebraic Geometry Algorithms Combinatorics Differential equations, partial Geometry, algebraic Graph theory Mathematics Mathematics and Statistics Several Complex Variables and Analytic Spaces Surfaces Theoretical, Mathematical and Computational Physics Topology |
title | Graphs on Surfaces and Their Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Graphs%20on%20Surfaces%20and%20Their%20Applications&rft.au=Lando,%20Sergei%20K&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2003&rft.volume=141&rft.issn=0938-0396&rft.isbn=9783642055232&rft.isbn_list=3642055230&rft.isbn_list=3540002030&rft.isbn_list=9783540002031&rft.isbn_list=3642535410&rft.isbn_list=9783642535413&rft_id=info:doi/10.1007/978-3-540-38361-1&rft_dat=%3Cproquest_askew%3EEBC3088246%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540383611&rft.eisbn_list=3540383611&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088246&rft_id=info:pmid/&rfr_iscdi=true |