Graphs on Surfaces and Their Applications

Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lando, Sergei K, Gamkrelidze, R. V, Zvonkin, Alexander K, Vassiliev, V. A
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 141
creator Lando, Sergei K
Gamkrelidze, R. V
Zvonkin, Alexander K
Vassiliev, V. A
description Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
doi_str_mv 10.1007/978-3-540-38361-1
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540383611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQho34EFXpD2DLhjqY2nH8NZaoFKRKDFSslu1eSWiUBDstf5-0YUFC3GLdq-fxnY3QLSX3lBA501JhhnlGMFNMUEzP0KTPWJ-cAno-9CJLCecpSy_QiGimMGFaXKGR4lTKNFX0Gk1i_CB9Ka20pCM0XQbbFjFp6uR1H7bWQ0xsvUnWBZQhmbdtVXrblU0db9Dl1lYRJj_nGL09Ltb5E169LJ_z-Qrbfj7n2FGuuRJKaEj9dkMsEZmTFryj3iqwHGTmhNTaZ4yDUlZttHREuEyD1cyxMZoOF9u4g69YNFUXzaEC1zS7aH69u2dnAxvbUNbvEMxAUWKOP3ekDTM9b06CORriD8MGX5QH-F-8G8Q2NJ97iJ05beSh7oKtzOIhZ0SpNBPsGx4bd7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3088246</pqid></control><display><type>book</type><title>Graphs on Surfaces and Their Applications</title><source>Springer Books</source><creator>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A</creator><creatorcontrib>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A ; SpringerLink (Online service)</creatorcontrib><description>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</description><edition>1</edition><identifier>ISSN: 0938-0396</identifier><identifier>ISBN: 9783642055232</identifier><identifier>ISBN: 3642055230</identifier><identifier>ISBN: 3540002030</identifier><identifier>ISBN: 9783540002031</identifier><identifier>ISBN: 3642535410</identifier><identifier>ISBN: 9783642535413</identifier><identifier>EISBN: 9783540383611</identifier><identifier>EISBN: 3540383611</identifier><identifier>DOI: 10.1007/978-3-540-38361-1</identifier><identifier>OCLC: 851772281</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Algebraic Geometry ; Algorithms ; Combinatorics ; Differential equations, partial ; Geometry, algebraic ; Graph theory ; Mathematics ; Mathematics and Statistics ; Several Complex Variables and Analytic Spaces ; Surfaces ; Theoretical, Mathematical and Computational Physics ; Topology</subject><creationdate>2003</creationdate><tpages>463</tpages><format>463</format><rights>Springer-Verlag Berlin Heidelberg 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</citedby><relation>Encyclopaedia of Mathematical Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-38361-1</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-38361-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-38361-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,24778,27923,38253,41440,42509</link.rule.ids></links><search><creatorcontrib>Lando, Sergei K</creatorcontrib><creatorcontrib>Gamkrelidze, R. V</creatorcontrib><creatorcontrib>Zvonkin, Alexander K</creatorcontrib><creatorcontrib>Vassiliev, V. A</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Graphs on Surfaces and Their Applications</title><description>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</description><subject>Algebraic Geometry</subject><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Differential equations, partial</subject><subject>Geometry, algebraic</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Several Complex Variables and Analytic Spaces</subject><subject>Surfaces</subject><subject>Theoretical, Mathematical and Computational Physics</subject><subject>Topology</subject><issn>0938-0396</issn><isbn>9783642055232</isbn><isbn>3642055230</isbn><isbn>3540002030</isbn><isbn>9783540002031</isbn><isbn>3642535410</isbn><isbn>9783642535413</isbn><isbn>9783540383611</isbn><isbn>3540383611</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2003</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNp9kD1PwzAQho34EFXpD2DLhjqY2nH8NZaoFKRKDFSslu1eSWiUBDstf5-0YUFC3GLdq-fxnY3QLSX3lBA501JhhnlGMFNMUEzP0KTPWJ-cAno-9CJLCecpSy_QiGimMGFaXKGR4lTKNFX0Gk1i_CB9Ka20pCM0XQbbFjFp6uR1H7bWQ0xsvUnWBZQhmbdtVXrblU0db9Dl1lYRJj_nGL09Ltb5E169LJ_z-Qrbfj7n2FGuuRJKaEj9dkMsEZmTFryj3iqwHGTmhNTaZ4yDUlZttHREuEyD1cyxMZoOF9u4g69YNFUXzaEC1zS7aH69u2dnAxvbUNbvEMxAUWKOP3ekDTM9b06CORriD8MGX5QH-F-8G8Q2NJ97iJ05beSh7oKtzOIhZ0SpNBPsGx4bd7g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Lando, Sergei K</creator><creator>Gamkrelidze, R. V</creator><creator>Zvonkin, Alexander K</creator><creator>Vassiliev, V. A</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2003</creationdate><title>Graphs on Surfaces and Their Applications</title><author>Lando, Sergei K ; Gamkrelidze, R. V ; Zvonkin, Alexander K ; Vassiliev, V. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a36455-b159586869e2cfd0a064b7aecb1ca8ea5e74b6799c435e88a8d97b06b49ea93b3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebraic Geometry</topic><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Differential equations, partial</topic><topic>Geometry, algebraic</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Several Complex Variables and Analytic Spaces</topic><topic>Surfaces</topic><topic>Theoretical, Mathematical and Computational Physics</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lando, Sergei K</creatorcontrib><creatorcontrib>Gamkrelidze, R. V</creatorcontrib><creatorcontrib>Zvonkin, Alexander K</creatorcontrib><creatorcontrib>Vassiliev, V. A</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lando, Sergei K</au><au>Gamkrelidze, R. V</au><au>Zvonkin, Alexander K</au><au>Vassiliev, V. A</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Graphs on Surfaces and Their Applications</btitle><seriestitle>Encyclopaedia of Mathematical Sciences</seriestitle><date>2003</date><risdate>2003</risdate><volume>141</volume><issn>0938-0396</issn><isbn>9783642055232</isbn><isbn>3642055230</isbn><isbn>3540002030</isbn><isbn>9783540002031</isbn><isbn>3642535410</isbn><isbn>9783642535413</isbn><eisbn>9783540383611</eisbn><eisbn>3540383611</eisbn><abstract>Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-38361-1</doi><oclcid>851772281</oclcid><tpages>463</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0938-0396
ispartof
issn 0938-0396
language eng
recordid cdi_askewsholts_vlebooks_9783540383611
source Springer Books
subjects Algebraic Geometry
Algorithms
Combinatorics
Differential equations, partial
Geometry, algebraic
Graph theory
Mathematics
Mathematics and Statistics
Several Complex Variables and Analytic Spaces
Surfaces
Theoretical, Mathematical and Computational Physics
Topology
title Graphs on Surfaces and Their Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Graphs%20on%20Surfaces%20and%20Their%20Applications&rft.au=Lando,%20Sergei%20K&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2003&rft.volume=141&rft.issn=0938-0396&rft.isbn=9783642055232&rft.isbn_list=3642055230&rft.isbn_list=3540002030&rft.isbn_list=9783540002031&rft.isbn_list=3642535410&rft.isbn_list=9783642535413&rft_id=info:doi/10.1007/978-3-540-38361-1&rft_dat=%3Cproquest_askew%3EEBC3088246%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540383611&rft.eisbn_list=3540383611&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088246&rft_id=info:pmid/&rfr_iscdi=true