Reflection Positivity: A Representation Theoretic Perspective
Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.This book provides the first presentation of the representation theoretic aspects of Refection Positivity and...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 32 |
creator | Neeb, Karl-Hermann Ólafsson, Gestur |
description | Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich.For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group.A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool. |
doi_str_mv | 10.1007/978-3-319-94755-6 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783319947556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5447614</sourcerecordid><originalsourceid>FETCH-LOGICAL-a24602-41e7d84bb4339a913c6349ebce111772f068bad45f88293478dee31e9731b5ae3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhccn1tqlC3fuxMXYubnzXGqoDygoIm6HSXqjsaGpmVjx35s2InR14ZzvHLiHsTMQVyCEGTtjOXIEx500SnG9w0adhp2yEfQuGyTgDAej1d6WJ93-v6fMITsGIdGiAGmP2CjGDyFEItAqawfs9JmKivK2rBfnT3Us23JVtj8n7KAIVaTR3x2y19vJS3rPp493D-n1lIdEapFwCWRmVmaZRHTBAeYapaMsJwAwJimEtlmYSVVYmziUxs6IEMgZhEwFwiG77ItDnNN3fK-rNvpVRVldz6Pferhjxz0bl025eKPG9xQIv55sTXv0He83Ab9OXPSJZVN_flFs_aY4p0XbhMpPblIlpdEg8RdmM2Ek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5447614</pqid></control><display><type>book</type><title>Reflection Positivity: A Representation Theoretic Perspective</title><source>Springer Books</source><creator>Neeb, Karl-Hermann ; Ólafsson, Gestur</creator><creatorcontrib>Neeb, Karl-Hermann ; Ólafsson, Gestur</creatorcontrib><description>Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich.For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group.A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool.</description><edition>1st ed. 2018.</edition><identifier>ISSN: 2197-1757</identifier><identifier>ISBN: 9783319947549</identifier><identifier>ISBN: 3319947540</identifier><identifier>EISSN: 2197-1765</identifier><identifier>EISBN: 9783319947556</identifier><identifier>EISBN: 3319947559</identifier><identifier>DOI: 10.1007/978-3-319-94755-6</identifier><identifier>OCLC: 1043830148</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Abstract Harmonic Analysis ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Quantum Field Theories, String Theory ; Representations of groups ; Topological Groups, Lie Groups</subject><creationdate>2018</creationdate><tpages>145</tpages><format>145</format><rights>The Author(s) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Mathematical Physics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-94755-6</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-94755-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Neeb, Karl-Hermann</creatorcontrib><creatorcontrib>Ólafsson, Gestur</creatorcontrib><title>Reflection Positivity: A Representation Theoretic Perspective</title><description>Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich.For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group.A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool.</description><subject>Abstract Harmonic Analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantum Field Theories, String Theory</subject><subject>Representations of groups</subject><subject>Topological Groups, Lie Groups</subject><issn>2197-1757</issn><issn>2197-1765</issn><isbn>9783319947549</isbn><isbn>3319947540</isbn><isbn>9783319947556</isbn><isbn>3319947559</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2018</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkEtLw0AUhccn1tqlC3fuxMXYubnzXGqoDygoIm6HSXqjsaGpmVjx35s2InR14ZzvHLiHsTMQVyCEGTtjOXIEx500SnG9w0adhp2yEfQuGyTgDAej1d6WJ93-v6fMITsGIdGiAGmP2CjGDyFEItAqawfs9JmKivK2rBfnT3Us23JVtj8n7KAIVaTR3x2y19vJS3rPp493D-n1lIdEapFwCWRmVmaZRHTBAeYapaMsJwAwJimEtlmYSVVYmziUxs6IEMgZhEwFwiG77ItDnNN3fK-rNvpVRVldz6Pferhjxz0bl025eKPG9xQIv55sTXv0He83Ab9OXPSJZVN_flFs_aY4p0XbhMpPblIlpdEg8RdmM2Ek</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Neeb, Karl-Hermann</creator><creator>Ólafsson, Gestur</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2018</creationdate><title>Reflection Positivity</title><author>Neeb, Karl-Hermann ; Ólafsson, Gestur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a24602-41e7d84bb4339a913c6349ebce111772f068bad45f88293478dee31e9731b5ae3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantum Field Theories, String Theory</topic><topic>Representations of groups</topic><topic>Topological Groups, Lie Groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Neeb, Karl-Hermann</creatorcontrib><creatorcontrib>Ólafsson, Gestur</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neeb, Karl-Hermann</au><au>Ólafsson, Gestur</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Reflection Positivity: A Representation Theoretic Perspective</btitle><seriestitle>SpringerBriefs in Mathematical Physics</seriestitle><date>2018</date><risdate>2018</risdate><volume>32</volume><issn>2197-1757</issn><eissn>2197-1765</eissn><isbn>9783319947549</isbn><isbn>3319947540</isbn><eisbn>9783319947556</eisbn><eisbn>3319947559</eisbn><abstract>Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes.This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich.For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group.A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-94755-6</doi><oclcid>1043830148</oclcid><tpages>145</tpages><edition>1st ed. 2018.</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2197-1757 |
ispartof | |
issn | 2197-1757 2197-1765 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783319947556 |
source | Springer Books |
subjects | Abstract Harmonic Analysis Mathematical Physics Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Quantum Field Theories, String Theory Representations of groups Topological Groups, Lie Groups |
title | Reflection Positivity: A Representation Theoretic Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Reflection%20Positivity:%20A%20Representation%20Theoretic%20Perspective&rft.au=Neeb,%20Karl-Hermann&rft.date=2018&rft.volume=32&rft.issn=2197-1757&rft.eissn=2197-1765&rft.isbn=9783319947549&rft.isbn_list=3319947540&rft_id=info:doi/10.1007/978-3-319-94755-6&rft_dat=%3Cproquest_askew%3EEBC5447614%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319947556&rft.eisbn_list=3319947559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5447614&rft_id=info:pmid/&rfr_iscdi=true |