Artificial Intelligence in Label-Free Microscopy: Biological Cell Classification by Time Stretch
This work introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mahjoubfar, Ata Chen, Claire Lifan Jalali, Bahram |
description | This work introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. |
doi_str_mv | 10.1007/978-3-319-51448-2 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783319514482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4844289</sourcerecordid><originalsourceid>FETCH-LOGICAL-a21898-6aecd0e7305a761da12f9abe46c1e4bb774088d837546e84664209701e73d9183</originalsourceid><addsrcrecordid>eNpVkEtPAjEUhWuMRkR-gLvZGReVvuhjiQSUBOPGuG06nQtWmhmcjhr-vYXRhaube_Kdk3MvQteU3FFC1NgojTnm1OAJFUJjdoJGWeNZOQrsFF3-LUqco4HRXBlFmL5Ao5TeCSFUUyO5GiAybbuwDj64WCzrDmIMG6g9FKEuVq6EiBctQPEUfNsk3-z2V-hs7WKC0e8cotfF_GX2iFfPD8vZdIUdo9poLB34ioDiZOKUpJWjbG1yoJCegihLpQTRusrNJkKCFlIKRnJJmi2VoZoP0W0f7NIWvtNbE7tkvyKUTbNN9t-9mR33bNq1od5Aa3uKEnv42IG23GbeHg324LjpHbu2-fiE1NljsIe6a1208_uZ0EIwbfgPkoNlmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4844289</pqid></control><display><type>book</type><title>Artificial Intelligence in Label-Free Microscopy: Biological Cell Classification by Time Stretch</title><source>Springer Books</source><creator>Mahjoubfar, Ata ; Chen, Claire Lifan ; Jalali, Bahram</creator><creatorcontrib>Mahjoubfar, Ata ; Chen, Claire Lifan ; Jalali, Bahram</creatorcontrib><description>This work introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development.</description><edition>1</edition><identifier>ISBN: 3319514474</identifier><identifier>ISBN: 9783319514475</identifier><identifier>EISBN: 9783319514482</identifier><identifier>EISBN: 3319514482</identifier><identifier>DOI: 10.1007/978-3-319-51448-2</identifier><identifier>OCLC: 983797028</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Artificial intelligence ; Bioinformatics ; Biomedical Engineering and Bioengineering ; Electronics and Microelectronics, Instrumentation ; Engineering ; Image Processing and Computer Vision ; Microscopy</subject><creationdate>2017</creationdate><tpages>151</tpages><format>151</format><rights>Springer International Publishing AG 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-51448-2</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-51448-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>307,781,785,787,27929,38259,42515</link.rule.ids></links><search><creatorcontrib>Mahjoubfar, Ata</creatorcontrib><creatorcontrib>Chen, Claire Lifan</creatorcontrib><creatorcontrib>Jalali, Bahram</creatorcontrib><title>Artificial Intelligence in Label-Free Microscopy: Biological Cell Classification by Time Stretch</title><description>This work introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development.</description><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Electronics and Microelectronics, Instrumentation</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Microscopy</subject><isbn>3319514474</isbn><isbn>9783319514475</isbn><isbn>9783319514482</isbn><isbn>3319514482</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2017</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkEtPAjEUhWuMRkR-gLvZGReVvuhjiQSUBOPGuG06nQtWmhmcjhr-vYXRhaube_Kdk3MvQteU3FFC1NgojTnm1OAJFUJjdoJGWeNZOQrsFF3-LUqco4HRXBlFmL5Ao5TeCSFUUyO5GiAybbuwDj64WCzrDmIMG6g9FKEuVq6EiBctQPEUfNsk3-z2V-hs7WKC0e8cotfF_GX2iFfPD8vZdIUdo9poLB34ioDiZOKUpJWjbG1yoJCegihLpQTRusrNJkKCFlIKRnJJmi2VoZoP0W0f7NIWvtNbE7tkvyKUTbNN9t-9mR33bNq1od5Aa3uKEnv42IG23GbeHg324LjpHbu2-fiE1NljsIe6a1208_uZ0EIwbfgPkoNlmQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Mahjoubfar, Ata</creator><creator>Chen, Claire Lifan</creator><creator>Jalali, Bahram</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2017</creationdate><title>Artificial Intelligence in Label-Free Microscopy</title><author>Mahjoubfar, Ata ; Chen, Claire Lifan ; Jalali, Bahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a21898-6aecd0e7305a761da12f9abe46c1e4bb774088d837546e84664209701e73d9183</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Electronics and Microelectronics, Instrumentation</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahjoubfar, Ata</creatorcontrib><creatorcontrib>Chen, Claire Lifan</creatorcontrib><creatorcontrib>Jalali, Bahram</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahjoubfar, Ata</au><au>Chen, Claire Lifan</au><au>Jalali, Bahram</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Artificial Intelligence in Label-Free Microscopy: Biological Cell Classification by Time Stretch</btitle><date>2017</date><risdate>2017</risdate><isbn>3319514474</isbn><isbn>9783319514475</isbn><eisbn>9783319514482</eisbn><eisbn>3319514482</eisbn><abstract>This work introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-51448-2</doi><oclcid>983797028</oclcid><tpages>151</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 3319514474 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783319514482 |
source | Springer Books |
subjects | Artificial intelligence Bioinformatics Biomedical Engineering and Bioengineering Electronics and Microelectronics, Instrumentation Engineering Image Processing and Computer Vision Microscopy |
title | Artificial Intelligence in Label-Free Microscopy: Biological Cell Classification by Time Stretch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Artificial%20Intelligence%20in%20Label-Free%20Microscopy:%20Biological%20Cell%20Classification%20by%20Time%20Stretch&rft.au=Mahjoubfar,%20Ata&rft.date=2017&rft.isbn=3319514474&rft.isbn_list=9783319514475&rft_id=info:doi/10.1007/978-3-319-51448-2&rft_dat=%3Cproquest_askew%3EEBC4844289%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319514482&rft.eisbn_list=3319514482&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4844289&rft_id=info:pmid/&rfr_iscdi=true |