Convolution Copula Econometrics

This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cherubini, Umberto, Gobbi, Fabio, Mulinacci, Sabrina
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cherubini, Umberto
Gobbi, Fabio
Mulinacci, Sabrina
description This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.
doi_str_mv 10.1007/978-3-319-48015-2
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783319480152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4755399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1TlNIPYNXuEAtTO56J7SVE5SFVYoMQO8tJHQhN4xKnRfw9SQOI1czo3jnzIOScsyvOmJxqqaiggmsKinGk0R45FW25q2CfDCKuOUVAdUBGrflXAzz80-DlmAx0jKAjBfEJGYXwzhjjMo4EwoCME19tfblpCl9NEr_elHYyy3zlV66piyyckaPclsGNfuKQPN_OnpJ7On-8e0iu59QKhgyoiqzlyEE5jphKDtJBypUWuXOwEOB4nKUMtcr5IltoplBCmzh0ea6c4mJILnuwDUv3Gd582QSzLV3q_TKYf9dh1HrHvde1mxbBrOtiZesvo2QMIhJRR5v2jtBq1aurTc_hzHSv7XhGmJZodkjTMS_6jnXtPzYuNGY3OnNVU9vSzG4SkIhCa_END31ulA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4755399</pqid></control><display><type>book</type><title>Convolution Copula Econometrics</title><source>Springer Books</source><creator>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</creator><creatorcontrib>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</creatorcontrib><description>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</description><edition>1st ed. 2016</edition><identifier>ISSN: 2191-544X</identifier><identifier>ISBN: 9783319480145</identifier><identifier>ISBN: 3319480146</identifier><identifier>EISSN: 2191-5458</identifier><identifier>EISBN: 3319480154</identifier><identifier>EISBN: 9783319480152</identifier><identifier>DOI: 10.1007/978-3-319-48015-2</identifier><identifier>OCLC: 965492846</identifier><identifier>EAN: 9783319480145</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Applications of Mathematics ; Autokorrelation ; Copulas (Mathematical statistics) ; Econometrics ; Markov-Kette ; Mathematics ; Mathematics and Statistics ; Modellierung ; Multivariate Verteilung ; Probability Theory and Stochastic Processes ; Simulation ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Wirtschaftsindikator</subject><creationdate>2016</creationdate><tpages>99</tpages><format>99</format><rights>The Author(s) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</citedby><relation>SpringerBriefs in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-48015-2</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-48015-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,780,784,786,4046,27924,38254,42510</link.rule.ids></links><search><creatorcontrib>Cherubini, Umberto</creatorcontrib><creatorcontrib>Gobbi, Fabio</creatorcontrib><creatorcontrib>Mulinacci, Sabrina</creatorcontrib><title>Convolution Copula Econometrics</title><description>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</description><subject>Applications of Mathematics</subject><subject>Autokorrelation</subject><subject>Copulas (Mathematical statistics)</subject><subject>Econometrics</subject><subject>Markov-Kette</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modellierung</subject><subject>Multivariate Verteilung</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Simulation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Wirtschaftsindikator</subject><issn>2191-544X</issn><issn>2191-5458</issn><isbn>9783319480145</isbn><isbn>3319480146</isbn><isbn>3319480154</isbn><isbn>9783319480152</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2016</creationdate><recordtype>book</recordtype><recordid>eNpNkMtOwzAQRc1TlNIPYNXuEAtTO56J7SVE5SFVYoMQO8tJHQhN4xKnRfw9SQOI1czo3jnzIOScsyvOmJxqqaiggmsKinGk0R45FW25q2CfDCKuOUVAdUBGrflXAzz80-DlmAx0jKAjBfEJGYXwzhjjMo4EwoCME19tfblpCl9NEr_elHYyy3zlV66piyyckaPclsGNfuKQPN_OnpJ7On-8e0iu59QKhgyoiqzlyEE5jphKDtJBypUWuXOwEOB4nKUMtcr5IltoplBCmzh0ea6c4mJILnuwDUv3Gd582QSzLV3q_TKYf9dh1HrHvde1mxbBrOtiZesvo2QMIhJRR5v2jtBq1aurTc_hzHSv7XhGmJZodkjTMS_6jnXtPzYuNGY3OnNVU9vSzG4SkIhCa_END31ulA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Cherubini, Umberto</creator><creator>Gobbi, Fabio</creator><creator>Mulinacci, Sabrina</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>OQ6</scope></search><sort><creationdate>2016</creationdate><title>Convolution Copula Econometrics</title><author>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Autokorrelation</topic><topic>Copulas (Mathematical statistics)</topic><topic>Econometrics</topic><topic>Markov-Kette</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modellierung</topic><topic>Multivariate Verteilung</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Simulation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Wirtschaftsindikator</topic><toplevel>online_resources</toplevel><creatorcontrib>Cherubini, Umberto</creatorcontrib><creatorcontrib>Gobbi, Fabio</creatorcontrib><creatorcontrib>Mulinacci, Sabrina</creatorcontrib><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherubini, Umberto</au><au>Gobbi, Fabio</au><au>Mulinacci, Sabrina</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Convolution Copula Econometrics</btitle><seriestitle>SpringerBriefs in Statistics</seriestitle><date>2016</date><risdate>2016</risdate><issn>2191-544X</issn><eissn>2191-5458</eissn><isbn>9783319480145</isbn><isbn>3319480146</isbn><eisbn>3319480154</eisbn><eisbn>9783319480152</eisbn><abstract>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-48015-2</doi><oclcid>965492846</oclcid><tpages>99</tpages><edition>1st ed. 2016</edition></addata></record>
fulltext fulltext
identifier ISSN: 2191-544X
ispartof
issn 2191-544X
2191-5458
language eng
recordid cdi_askewsholts_vlebooks_9783319480152
source Springer Books
subjects Applications of Mathematics
Autokorrelation
Copulas (Mathematical statistics)
Econometrics
Markov-Kette
Mathematics
Mathematics and Statistics
Modellierung
Multivariate Verteilung
Probability Theory and Stochastic Processes
Simulation
Statistical Theory and Methods
Statistics
Statistics for Business, Management, Economics, Finance, Insurance
Wirtschaftsindikator
title Convolution Copula Econometrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Convolution%20Copula%20Econometrics&rft.au=Cherubini,%20Umberto&rft.date=2016&rft.issn=2191-544X&rft.eissn=2191-5458&rft.isbn=9783319480145&rft.isbn_list=3319480146&rft_id=info:doi/10.1007/978-3-319-48015-2&rft_dat=%3Cproquest_askew%3EEBC4755399%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3319480154&rft.eisbn_list=9783319480152&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4755399&rft_id=info:pmid/&rfr_iscdi=true