Convolution Copula Econometrics
This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assump...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cherubini, Umberto Gobbi, Fabio Mulinacci, Sabrina |
description | This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field. |
doi_str_mv | 10.1007/978-3-319-48015-2 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783319480152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4755399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1TlNIPYNXuEAtTO56J7SVE5SFVYoMQO8tJHQhN4xKnRfw9SQOI1czo3jnzIOScsyvOmJxqqaiggmsKinGk0R45FW25q2CfDCKuOUVAdUBGrflXAzz80-DlmAx0jKAjBfEJGYXwzhjjMo4EwoCME19tfblpCl9NEr_elHYyy3zlV66piyyckaPclsGNfuKQPN_OnpJ7On-8e0iu59QKhgyoiqzlyEE5jphKDtJBypUWuXOwEOB4nKUMtcr5IltoplBCmzh0ea6c4mJILnuwDUv3Gd582QSzLV3q_TKYf9dh1HrHvde1mxbBrOtiZesvo2QMIhJRR5v2jtBq1aurTc_hzHSv7XhGmJZodkjTMS_6jnXtPzYuNGY3OnNVU9vSzG4SkIhCa_END31ulA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4755399</pqid></control><display><type>book</type><title>Convolution Copula Econometrics</title><source>Springer Books</source><creator>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</creator><creatorcontrib>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</creatorcontrib><description>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</description><edition>1st ed. 2016</edition><identifier>ISSN: 2191-544X</identifier><identifier>ISBN: 9783319480145</identifier><identifier>ISBN: 3319480146</identifier><identifier>EISSN: 2191-5458</identifier><identifier>EISBN: 3319480154</identifier><identifier>EISBN: 9783319480152</identifier><identifier>DOI: 10.1007/978-3-319-48015-2</identifier><identifier>OCLC: 965492846</identifier><identifier>EAN: 9783319480145</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Applications of Mathematics ; Autokorrelation ; Copulas (Mathematical statistics) ; Econometrics ; Markov-Kette ; Mathematics ; Mathematics and Statistics ; Modellierung ; Multivariate Verteilung ; Probability Theory and Stochastic Processes ; Simulation ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Wirtschaftsindikator</subject><creationdate>2016</creationdate><tpages>99</tpages><format>99</format><rights>The Author(s) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</citedby><relation>SpringerBriefs in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-48015-2</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-48015-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,780,784,786,4046,27924,38254,42510</link.rule.ids></links><search><creatorcontrib>Cherubini, Umberto</creatorcontrib><creatorcontrib>Gobbi, Fabio</creatorcontrib><creatorcontrib>Mulinacci, Sabrina</creatorcontrib><title>Convolution Copula Econometrics</title><description>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</description><subject>Applications of Mathematics</subject><subject>Autokorrelation</subject><subject>Copulas (Mathematical statistics)</subject><subject>Econometrics</subject><subject>Markov-Kette</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modellierung</subject><subject>Multivariate Verteilung</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Simulation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Wirtschaftsindikator</subject><issn>2191-544X</issn><issn>2191-5458</issn><isbn>9783319480145</isbn><isbn>3319480146</isbn><isbn>3319480154</isbn><isbn>9783319480152</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2016</creationdate><recordtype>book</recordtype><recordid>eNpNkMtOwzAQRc1TlNIPYNXuEAtTO56J7SVE5SFVYoMQO8tJHQhN4xKnRfw9SQOI1czo3jnzIOScsyvOmJxqqaiggmsKinGk0R45FW25q2CfDCKuOUVAdUBGrflXAzz80-DlmAx0jKAjBfEJGYXwzhjjMo4EwoCME19tfblpCl9NEr_elHYyy3zlV66piyyckaPclsGNfuKQPN_OnpJ7On-8e0iu59QKhgyoiqzlyEE5jphKDtJBypUWuXOwEOB4nKUMtcr5IltoplBCmzh0ea6c4mJILnuwDUv3Gd582QSzLV3q_TKYf9dh1HrHvde1mxbBrOtiZesvo2QMIhJRR5v2jtBq1aurTc_hzHSv7XhGmJZodkjTMS_6jnXtPzYuNGY3OnNVU9vSzG4SkIhCa_END31ulA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Cherubini, Umberto</creator><creator>Gobbi, Fabio</creator><creator>Mulinacci, Sabrina</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>OQ6</scope></search><sort><creationdate>2016</creationdate><title>Convolution Copula Econometrics</title><author>Cherubini, Umberto ; Gobbi, Fabio ; Mulinacci, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a30504-82aa15148e155b7147e4b1893fee4d34e16cb0598f1dcd908574dcde5eff8e813</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Autokorrelation</topic><topic>Copulas (Mathematical statistics)</topic><topic>Econometrics</topic><topic>Markov-Kette</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modellierung</topic><topic>Multivariate Verteilung</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Simulation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Wirtschaftsindikator</topic><toplevel>online_resources</toplevel><creatorcontrib>Cherubini, Umberto</creatorcontrib><creatorcontrib>Gobbi, Fabio</creatorcontrib><creatorcontrib>Mulinacci, Sabrina</creatorcontrib><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherubini, Umberto</au><au>Gobbi, Fabio</au><au>Mulinacci, Sabrina</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Convolution Copula Econometrics</btitle><seriestitle>SpringerBriefs in Statistics</seriestitle><date>2016</date><risdate>2016</risdate><issn>2191-544X</issn><eissn>2191-5458</eissn><isbn>9783319480145</isbn><isbn>3319480146</isbn><eisbn>3319480154</eisbn><eisbn>9783319480152</eisbn><abstract>This title presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-48015-2</doi><oclcid>965492846</oclcid><tpages>99</tpages><edition>1st ed. 2016</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-544X |
ispartof | |
issn | 2191-544X 2191-5458 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783319480152 |
source | Springer Books |
subjects | Applications of Mathematics Autokorrelation Copulas (Mathematical statistics) Econometrics Markov-Kette Mathematics Mathematics and Statistics Modellierung Multivariate Verteilung Probability Theory and Stochastic Processes Simulation Statistical Theory and Methods Statistics Statistics for Business, Management, Economics, Finance, Insurance Wirtschaftsindikator |
title | Convolution Copula Econometrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Convolution%20Copula%20Econometrics&rft.au=Cherubini,%20Umberto&rft.date=2016&rft.issn=2191-544X&rft.eissn=2191-5458&rft.isbn=9783319480145&rft.isbn_list=3319480146&rft_id=info:doi/10.1007/978-3-319-48015-2&rft_dat=%3Cproquest_askew%3EEBC4755399%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3319480154&rft.eisbn_list=9783319480152&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4755399&rft_id=info:pmid/&rfr_iscdi=true |