Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications
This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Brombin, Chiara Salmaso, Luigi Fontanella, Lara Ippoliti, Luigi Fusilli, Caterina |
description | This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain. The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space. The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book. They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression. |
doi_str_mv | 10.1007/978-3-319-26311-3 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783319263113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4405865</sourcerecordid><originalsourceid>FETCH-LOGICAL-a30413-ab2c36580a0a7802e47a2fd5e78ae84c496086c429094004937ea589abb07603</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1TlNIfwC03xCF0HTuJfSylPKQKkAoSN2uTujQ0dUJsqPrvcRtep9XufjPSDCGnFC4oQNqXqQhZyKgMo4RRGrIdcsz8ut1gl3QiKmkY81jskZ6Hf36Q7P_--Msh6UgmOXBJoyPSs_YNAGgSs5RHHaIescGldk2RB2imwX1l6r_LnZnpRptcB7OqCSYOXWFdkWMZXK0NLj0xmWOtg4HBcm0LG6wKNw8GdV16yBWVsSfkYIal1b3v2SXP16On4W04fri5Gw7GITLglIWYRTlLYgEImAqINE8xmk1jnQrUgudcJiCSnEcSfBYfhqUaYyExyyBNgHXJeeuLdqFXdl6VzqrPUmdVtbDqXzmUebbfsrZuCvOqG9VSFNSm9w2tmPK82grURnHWKuqmev_Q1qmtca6Na7BUo8sh5xALX-oXFqp6xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4405865</pqid></control><display><type>book</type><title>Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications</title><source>Springer Books</source><creator>Brombin, Chiara ; Salmaso, Luigi ; Fontanella, Lara ; Ippoliti, Luigi ; Fusilli, Caterina</creator><creatorcontrib>Brombin, Chiara ; Salmaso, Luigi ; Fontanella, Lara ; Ippoliti, Luigi ; Fusilli, Caterina</creatorcontrib><description>This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain. The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space. The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book. They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.</description><edition>1st ed. 2016</edition><identifier>ISSN: 2191-544X</identifier><identifier>ISBN: 9783319263106</identifier><identifier>ISBN: 3319263102</identifier><identifier>EISSN: 2191-5458</identifier><identifier>EISBN: 3319263110</identifier><identifier>EISBN: 9783319263113</identifier><identifier>DOI: 10.1007/978-3-319-26311-3</identifier><identifier>OCLC: 939404912</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer science_xMathematics ; Distribution (Probability theory) ; Mathematical statistics ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics</subject><creationdate>2016</creationdate><tpages>120</tpages><format>120</format><rights>The Authors 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-26311-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-26311-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><creatorcontrib>Brombin, Chiara</creatorcontrib><creatorcontrib>Salmaso, Luigi</creatorcontrib><creatorcontrib>Fontanella, Lara</creatorcontrib><creatorcontrib>Ippoliti, Luigi</creatorcontrib><creatorcontrib>Fusilli, Caterina</creatorcontrib><title>Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications</title><description>This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain. The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space. The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book. They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer science_xMathematics</subject><subject>Distribution (Probability theory)</subject><subject>Mathematical statistics</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>2191-544X</issn><issn>2191-5458</issn><isbn>9783319263106</isbn><isbn>3319263102</isbn><isbn>3319263110</isbn><isbn>9783319263113</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2016</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkEtPwzAQhM1TlNIfwC03xCF0HTuJfSylPKQKkAoSN2uTujQ0dUJsqPrvcRtep9XufjPSDCGnFC4oQNqXqQhZyKgMo4RRGrIdcsz8ut1gl3QiKmkY81jskZ6Hf36Q7P_--Msh6UgmOXBJoyPSs_YNAGgSs5RHHaIescGldk2RB2imwX1l6r_LnZnpRptcB7OqCSYOXWFdkWMZXK0NLj0xmWOtg4HBcm0LG6wKNw8GdV16yBWVsSfkYIal1b3v2SXP16On4W04fri5Gw7GITLglIWYRTlLYgEImAqINE8xmk1jnQrUgudcJiCSnEcSfBYfhqUaYyExyyBNgHXJeeuLdqFXdl6VzqrPUmdVtbDqXzmUebbfsrZuCvOqG9VSFNSm9w2tmPK82grURnHWKuqmev_Q1qmtca6Na7BUo8sh5xALX-oXFqp6xw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Brombin, Chiara</creator><creator>Salmaso, Luigi</creator><creator>Fontanella, Lara</creator><creator>Ippoliti, Luigi</creator><creator>Fusilli, Caterina</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2016</creationdate><title>Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications</title><author>Brombin, Chiara ; Salmaso, Luigi ; Fontanella, Lara ; Ippoliti, Luigi ; Fusilli, Caterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a30413-ab2c36580a0a7802e47a2fd5e78ae84c496086c429094004937ea589abb07603</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer science_xMathematics</topic><topic>Distribution (Probability theory)</topic><topic>Mathematical statistics</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Brombin, Chiara</creatorcontrib><creatorcontrib>Salmaso, Luigi</creatorcontrib><creatorcontrib>Fontanella, Lara</creatorcontrib><creatorcontrib>Ippoliti, Luigi</creatorcontrib><creatorcontrib>Fusilli, Caterina</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brombin, Chiara</au><au>Salmaso, Luigi</au><au>Fontanella, Lara</au><au>Ippoliti, Luigi</au><au>Fusilli, Caterina</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications</btitle><seriestitle>SpringerBriefs in Statistics</seriestitle><date>2016</date><risdate>2016</risdate><issn>2191-544X</issn><eissn>2191-5458</eissn><isbn>9783319263106</isbn><isbn>3319263102</isbn><eisbn>3319263110</eisbn><eisbn>9783319263113</eisbn><abstract>This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain. The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space. The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book. They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-26311-3</doi><oclcid>939404912</oclcid><tpages>120</tpages><edition>1st ed. 2016</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-544X |
ispartof | |
issn | 2191-544X 2191-5458 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783319263113 |
source | Springer Books |
subjects | Computational Mathematics and Numerical Analysis Computer science_xMathematics Distribution (Probability theory) Mathematical statistics Mathematics and Statistics Probability and Statistics in Computer Science Statistical Theory and Methods Statistics |
title | Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Parametric%20and%20Nonparametric%20Inference%20for%20Statistical%20Dynamic%20Shape%20Analysis%20with%20Applications&rft.au=Brombin,%20Chiara&rft.date=2016&rft.issn=2191-544X&rft.eissn=2191-5458&rft.isbn=9783319263106&rft.isbn_list=3319263102&rft_id=info:doi/10.1007/978-3-319-26311-3&rft_dat=%3Cproquest_askew%3EEBC4405865%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3319263110&rft.eisbn_list=9783319263113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4405865&rft_id=info:pmid/&rfr_iscdi=true |