Categorical Donaldson-Thomas Theory for Local Surfaces

This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Toda, Yukinobu
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 2350
creator Toda, Yukinobu
description This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.
doi_str_mv 10.1007/978-3-031-61705-8
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031617058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31518795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a8762-f5871a256c38b5db384d5c8c7e1207e148c28a9757647c529961f43cd6121343</originalsourceid><addsrcrecordid>eNpNkElPwzAQhc0q2tIfwC1HOJh6X44QyiJV4kDulus4bWmIwU5B_HuSBiQuM_M033vSDAAXGF1jhORMSwUpRBRDgSXiUB2AMe3kXtFDMOonqIUmR2DawX87ho_BqAvoHIyyUzDGjHGFuebsDExTekUIUUKJEGoERG5bvwpx42yd3YXG1mUKDSzW4c2mrFj7EL-zKsRsEXriZRcr63w6ByeVrZOf_vYJKO7nRf4IF88PT_nNAlolBYEVVxJbwoWjasnLJVWs5E456TFBXWHKEWW15FIw6TjRWuCKUVcKTDBldAKuhlibtv4rrUPdJvNZ-2UI22T-3cxVx84GNr3HTbPy0QwURqZ_Z08bajre7A2md1wOjvcYPnY-tWYf7HzTRlub-W1OMcdKak5_ALozato</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC31518795</pqid></control><display><type>book</type><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><source>Springer Books</source><creator>Toda, Yukinobu</creator><creatorcontrib>Toda, Yukinobu</creatorcontrib><description>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783031617041</identifier><identifier>ISBN: 3031617045</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3031617053</identifier><identifier>EISBN: 9783031617058</identifier><identifier>DOI: 10.1007/978-3-031-61705-8</identifier><identifier>OCLC: 1445815954</identifier><language>eng</language><publisher>Cham: Springer</publisher><subject>Algebraic Geometry ; Category Theory, Homological Algebra ; Donaldson-Thomas invariants ; Geometry, Algebraic ; Mathematical Physics ; Mathematics ; Mathematics and Statistics</subject><creationdate>2024</creationdate><tpages>318</tpages><format>318</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-61705-8</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-61705-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Toda, Yukinobu</creatorcontrib><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><description>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</description><subject>Algebraic Geometry</subject><subject>Category Theory, Homological Algebra</subject><subject>Donaldson-Thomas invariants</subject><subject>Geometry, Algebraic</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783031617041</isbn><isbn>3031617045</isbn><isbn>3031617053</isbn><isbn>9783031617058</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2024</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkElPwzAQhc0q2tIfwC1HOJh6X44QyiJV4kDulus4bWmIwU5B_HuSBiQuM_M033vSDAAXGF1jhORMSwUpRBRDgSXiUB2AMe3kXtFDMOonqIUmR2DawX87ho_BqAvoHIyyUzDGjHGFuebsDExTekUIUUKJEGoERG5bvwpx42yd3YXG1mUKDSzW4c2mrFj7EL-zKsRsEXriZRcr63w6ByeVrZOf_vYJKO7nRf4IF88PT_nNAlolBYEVVxJbwoWjasnLJVWs5E456TFBXWHKEWW15FIw6TjRWuCKUVcKTDBldAKuhlibtv4rrUPdJvNZ-2UI22T-3cxVx84GNr3HTbPy0QwURqZ_Z08bajre7A2md1wOjvcYPnY-tWYf7HzTRlub-W1OMcdKak5_ALozato</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Toda, Yukinobu</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope/></search><sort><creationdate>2024</creationdate><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><author>Toda, Yukinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a8762-f5871a256c38b5db384d5c8c7e1207e148c28a9757647c529961f43cd6121343</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Category Theory, Homological Algebra</topic><topic>Donaldson-Thomas invariants</topic><topic>Geometry, Algebraic</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Toda, Yukinobu</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toda, Yukinobu</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Categorical Donaldson-Thomas Theory for Local Surfaces</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2024</date><risdate>2024</risdate><volume>2350</volume><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783031617041</isbn><isbn>3031617045</isbn><eisbn>3031617053</eisbn><eisbn>9783031617058</eisbn><abstract>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</abstract><cop>Cham</cop><pub>Springer</pub><doi>10.1007/978-3-031-61705-8</doi><oclcid>1445815954</oclcid><tpages>318</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof
issn 0075-8434
1617-9692
language eng
recordid cdi_askewsholts_vlebooks_9783031617058
source Springer Books
subjects Algebraic Geometry
Category Theory, Homological Algebra
Donaldson-Thomas invariants
Geometry, Algebraic
Mathematical Physics
Mathematics
Mathematics and Statistics
title Categorical Donaldson-Thomas Theory for Local Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Categorical%20Donaldson-Thomas%20Theory%20for%20Local%20Surfaces&rft.au=Toda,%20Yukinobu&rft.date=2024&rft.volume=2350&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783031617041&rft.isbn_list=3031617045&rft_id=info:doi/10.1007/978-3-031-61705-8&rft_dat=%3Cproquest_askew%3EEBC31518795%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031617053&rft.eisbn_list=9783031617058&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31518795&rft_id=info:pmid/&rfr_iscdi=true