Categorical Donaldson-Thomas Theory for Local Surfaces
This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 2350 |
creator | Toda, Yukinobu |
description | This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas. |
doi_str_mv | 10.1007/978-3-031-61705-8 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031617058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31518795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a8762-f5871a256c38b5db384d5c8c7e1207e148c28a9757647c529961f43cd6121343</originalsourceid><addsrcrecordid>eNpNkElPwzAQhc0q2tIfwC1HOJh6X44QyiJV4kDulus4bWmIwU5B_HuSBiQuM_M033vSDAAXGF1jhORMSwUpRBRDgSXiUB2AMe3kXtFDMOonqIUmR2DawX87ho_BqAvoHIyyUzDGjHGFuebsDExTekUIUUKJEGoERG5bvwpx42yd3YXG1mUKDSzW4c2mrFj7EL-zKsRsEXriZRcr63w6ByeVrZOf_vYJKO7nRf4IF88PT_nNAlolBYEVVxJbwoWjasnLJVWs5E456TFBXWHKEWW15FIw6TjRWuCKUVcKTDBldAKuhlibtv4rrUPdJvNZ-2UI22T-3cxVx84GNr3HTbPy0QwURqZ_Z08bajre7A2md1wOjvcYPnY-tWYf7HzTRlub-W1OMcdKak5_ALozato</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC31518795</pqid></control><display><type>book</type><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><source>Springer Books</source><creator>Toda, Yukinobu</creator><creatorcontrib>Toda, Yukinobu</creatorcontrib><description>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783031617041</identifier><identifier>ISBN: 3031617045</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3031617053</identifier><identifier>EISBN: 9783031617058</identifier><identifier>DOI: 10.1007/978-3-031-61705-8</identifier><identifier>OCLC: 1445815954</identifier><language>eng</language><publisher>Cham: Springer</publisher><subject>Algebraic Geometry ; Category Theory, Homological Algebra ; Donaldson-Thomas invariants ; Geometry, Algebraic ; Mathematical Physics ; Mathematics ; Mathematics and Statistics</subject><creationdate>2024</creationdate><tpages>318</tpages><format>318</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-61705-8</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-61705-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Toda, Yukinobu</creatorcontrib><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><description>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</description><subject>Algebraic Geometry</subject><subject>Category Theory, Homological Algebra</subject><subject>Donaldson-Thomas invariants</subject><subject>Geometry, Algebraic</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783031617041</isbn><isbn>3031617045</isbn><isbn>3031617053</isbn><isbn>9783031617058</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2024</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkElPwzAQhc0q2tIfwC1HOJh6X44QyiJV4kDulus4bWmIwU5B_HuSBiQuM_M033vSDAAXGF1jhORMSwUpRBRDgSXiUB2AMe3kXtFDMOonqIUmR2DawX87ho_BqAvoHIyyUzDGjHGFuebsDExTekUIUUKJEGoERG5bvwpx42yd3YXG1mUKDSzW4c2mrFj7EL-zKsRsEXriZRcr63w6ByeVrZOf_vYJKO7nRf4IF88PT_nNAlolBYEVVxJbwoWjasnLJVWs5E456TFBXWHKEWW15FIw6TjRWuCKUVcKTDBldAKuhlibtv4rrUPdJvNZ-2UI22T-3cxVx84GNr3HTbPy0QwURqZ_Z08bajre7A2md1wOjvcYPnY-tWYf7HzTRlub-W1OMcdKak5_ALozato</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Toda, Yukinobu</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope/></search><sort><creationdate>2024</creationdate><title>Categorical Donaldson-Thomas Theory for Local Surfaces</title><author>Toda, Yukinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a8762-f5871a256c38b5db384d5c8c7e1207e148c28a9757647c529961f43cd6121343</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Category Theory, Homological Algebra</topic><topic>Donaldson-Thomas invariants</topic><topic>Geometry, Algebraic</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Toda, Yukinobu</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toda, Yukinobu</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Categorical Donaldson-Thomas Theory for Local Surfaces</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2024</date><risdate>2024</risdate><volume>2350</volume><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783031617041</isbn><isbn>3031617045</isbn><eisbn>3031617053</eisbn><eisbn>9783031617058</eisbn><abstract>This book provides an introduction to categorical Donaldson-Thomas (DT) theory, a rapidly developing field which has close links to enumerative geometry, birational geometry, geometric representation theory and classical moduli problems in algebraic geometry. The focus is on local surfaces, i.e. the total spaces of canonical line bundles on algebraic surfaces, which form an interesting class of Calabi-Yau 3-folds. Using Koszul duality equivalences and singular support theory, dg-categories are constructed which categorify Donaldson-Thomas invariants on local surfaces. The DT invariants virtually count stable coherent sheaves on Calabi-Yau 3-folds, and play an important role in modern enumerative geometry, representation theory and mathematical physics.Requiring a basic knowledge of algebraic geometry and homological algebra, this monograph is primarily addressed to researchers working in enumerative geometry, especially Donaldson-Thomas theory, derived categories of coherent sheaves, and related areas.</abstract><cop>Cham</cop><pub>Springer</pub><doi>10.1007/978-3-031-61705-8</doi><oclcid>1445815954</oclcid><tpages>318</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783031617058 |
source | Springer Books |
subjects | Algebraic Geometry Category Theory, Homological Algebra Donaldson-Thomas invariants Geometry, Algebraic Mathematical Physics Mathematics Mathematics and Statistics |
title | Categorical Donaldson-Thomas Theory for Local Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Categorical%20Donaldson-Thomas%20Theory%20for%20Local%20Surfaces&rft.au=Toda,%20Yukinobu&rft.date=2024&rft.volume=2350&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783031617041&rft.isbn_list=3031617045&rft_id=info:doi/10.1007/978-3-031-61705-8&rft_dat=%3Cproquest_askew%3EEBC31518795%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031617053&rft.eisbn_list=9783031617058&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31518795&rft_id=info:pmid/&rfr_iscdi=true |