Forecasting with Artificial Intelligence: Theory and Applications

Part I. Artificial intelligence : present and future -- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA) -- 2. Expecting the future: How AI's potential performance will shape current behavior -- Part II. The status of machine learning methods for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hamoudia, Mohsen, Makridakis, Spyros, Spiliotis, Evangelos
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hamoudia, Mohsen
Makridakis, Spyros
Spiliotis, Evangelos
description Part I. Artificial intelligence : present and future -- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA) -- 2. Expecting the future: How AI's potential performance will shape current behavior -- Part II. The status of machine learning methods for time series and new products forecasting -- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future -- 4. Machine Learning for New Product Forecasting -- Part III. Global forecasting models -- 5. Forecasting in Big Data with Global Forecasting Models -- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning -- 7. Handling Concept Drift in Global Time Series Forecasting -- 8. Neural network ensembles for univariate time series forecasting -- Part IV. Meta-learning and feature-based forecasting -- 9. Large scale time series forecasting with meta-learning -- 10. Forecasting large collections of time series: feature-based methods -- Part V. Special applications -- 11. Deep Learning based Forecasting: a case study from the online fashion industry -- 12. The intersection of machine learning with forecasting and optimisation: theory and applications -- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting -- 14. The FVA framework for evaluating forecasting performance. .
doi_str_mv 10.1007/978-3-031-35879-1
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031358791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC30750411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a11069-1652a3afe4c96bddce579a230d5607f9575d6a515fc2e81cd14b5c1f22b048963</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhM1TtKU_gFuO5RDqtePXsVQtVKrEBXG1HMdpTUNS4kDFvydpAInTSjOz364GoRvAd4CxmCohYxpjCjFlUqgYTtC41WirHAU4RQPCOYmpFPgMDX8NSc__DE4u0RCoUsAF5fwKjUN4xRgTRRWVyQBNllXtrAmNLzfRwTfbaFY3PvfWmyJalY0rCr9xpXXX6CI3RXDjnzlCL8vF8_wxXj89rOazdWwAMG-_5IwYanKXWMXTLLOOCWUIxRnjWOSKCZZxw4DlljgJNoMkZRZyQlKcSMXpCN32YBN27hC2VdEE_Vm4tKp2Qf8roM1GfdbZqvRB72v_ZuovDZJjRhSwLjLtI6E1y42rdQ8CrLuWO6CmukXqI1N3G5N-Y19X7x8uNPp427qyqU2hF_dzigXDCQD9BrSScgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC30750411</pqid></control><display><type>book</type><title>Forecasting with Artificial Intelligence: Theory and Applications</title><source>Springer Books</source><creator>Hamoudia, Mohsen ; Makridakis, Spyros ; Spiliotis, Evangelos</creator><contributor>Spiliotis, Evangelos ; Hamoudia, Mohsen ; Makridakis, Spyros</contributor><creatorcontrib>Hamoudia, Mohsen ; Makridakis, Spyros ; Spiliotis, Evangelos ; Spiliotis, Evangelos ; Hamoudia, Mohsen ; Makridakis, Spyros</creatorcontrib><description>Part I. Artificial intelligence : present and future -- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA) -- 2. Expecting the future: How AI's potential performance will shape current behavior -- Part II. The status of machine learning methods for time series and new products forecasting -- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future -- 4. Machine Learning for New Product Forecasting -- Part III. Global forecasting models -- 5. Forecasting in Big Data with Global Forecasting Models -- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning -- 7. Handling Concept Drift in Global Time Series Forecasting -- 8. Neural network ensembles for univariate time series forecasting -- Part IV. Meta-learning and feature-based forecasting -- 9. Large scale time series forecasting with meta-learning -- 10. Forecasting large collections of time series: feature-based methods -- Part V. Special applications -- 11. Deep Learning based Forecasting: a case study from the online fashion industry -- 12. The intersection of machine learning with forecasting and optimisation: theory and applications -- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting -- 14. The FVA framework for evaluating forecasting performance. .</description><edition>1</edition><identifier>ISSN: 2662-3862</identifier><identifier>ISBN: 3031358783</identifier><identifier>ISBN: 9783031358784</identifier><identifier>ISBN: 9783031358791</identifier><identifier>ISBN: 3031358791</identifier><identifier>EISSN: 2662-3870</identifier><identifier>EISBN: 9783031358791</identifier><identifier>EISBN: 3031358791</identifier><identifier>DOI: 10.1007/978-3-031-35879-1</identifier><identifier>OCLC: 1399167366</identifier><language>eng</language><publisher>Cham: Palgrave Macmillan</publisher><subject>Artificial Intelligence ; Computer science ; Economics ; Economics and Finance ; Economics, general ; Forecasting ; Technological innovations ; Theory of Computation</subject><creationdate>2023</creationdate><tpages>441</tpages><format>441</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Palgrave Advances in the Economics of Innovation and Technology</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-35879-1</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-35879-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27904,38234,42490</link.rule.ids></links><search><contributor>Spiliotis, Evangelos</contributor><contributor>Hamoudia, Mohsen</contributor><contributor>Makridakis, Spyros</contributor><creatorcontrib>Hamoudia, Mohsen</creatorcontrib><creatorcontrib>Makridakis, Spyros</creatorcontrib><creatorcontrib>Spiliotis, Evangelos</creatorcontrib><title>Forecasting with Artificial Intelligence: Theory and Applications</title><description>Part I. Artificial intelligence : present and future -- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA) -- 2. Expecting the future: How AI's potential performance will shape current behavior -- Part II. The status of machine learning methods for time series and new products forecasting -- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future -- 4. Machine Learning for New Product Forecasting -- Part III. Global forecasting models -- 5. Forecasting in Big Data with Global Forecasting Models -- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning -- 7. Handling Concept Drift in Global Time Series Forecasting -- 8. Neural network ensembles for univariate time series forecasting -- Part IV. Meta-learning and feature-based forecasting -- 9. Large scale time series forecasting with meta-learning -- 10. Forecasting large collections of time series: feature-based methods -- Part V. Special applications -- 11. Deep Learning based Forecasting: a case study from the online fashion industry -- 12. The intersection of machine learning with forecasting and optimisation: theory and applications -- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting -- 14. The FVA framework for evaluating forecasting performance. .</description><subject>Artificial Intelligence</subject><subject>Computer science</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Economics, general</subject><subject>Forecasting</subject><subject>Technological innovations</subject><subject>Theory of Computation</subject><issn>2662-3862</issn><issn>2662-3870</issn><isbn>3031358783</isbn><isbn>9783031358784</isbn><isbn>9783031358791</isbn><isbn>3031358791</isbn><isbn>9783031358791</isbn><isbn>3031358791</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><recordid>eNpVkEtPwzAQhM1TtKU_gFuO5RDqtePXsVQtVKrEBXG1HMdpTUNS4kDFvydpAInTSjOz364GoRvAd4CxmCohYxpjCjFlUqgYTtC41WirHAU4RQPCOYmpFPgMDX8NSc__DE4u0RCoUsAF5fwKjUN4xRgTRRWVyQBNllXtrAmNLzfRwTfbaFY3PvfWmyJalY0rCr9xpXXX6CI3RXDjnzlCL8vF8_wxXj89rOazdWwAMG-_5IwYanKXWMXTLLOOCWUIxRnjWOSKCZZxw4DlljgJNoMkZRZyQlKcSMXpCN32YBN27hC2VdEE_Vm4tKp2Qf8roM1GfdbZqvRB72v_ZuovDZJjRhSwLjLtI6E1y42rdQ8CrLuWO6CmukXqI1N3G5N-Y19X7x8uNPp427qyqU2hF_dzigXDCQD9BrSScgM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hamoudia, Mohsen</creator><creator>Makridakis, Spyros</creator><creator>Spiliotis, Evangelos</creator><general>Palgrave Macmillan</general><general>Springer Nature Switzerland</general><scope>OQ6</scope></search><sort><creationdate>2023</creationdate><title>Forecasting with Artificial Intelligence</title><author>Hamoudia, Mohsen ; Makridakis, Spyros ; Spiliotis, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a11069-1652a3afe4c96bddce579a230d5607f9575d6a515fc2e81cd14b5c1f22b048963</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer science</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Economics, general</topic><topic>Forecasting</topic><topic>Technological innovations</topic><topic>Theory of Computation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamoudia, Mohsen</creatorcontrib><creatorcontrib>Makridakis, Spyros</creatorcontrib><creatorcontrib>Spiliotis, Evangelos</creatorcontrib><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamoudia, Mohsen</au><au>Makridakis, Spyros</au><au>Spiliotis, Evangelos</au><au>Spiliotis, Evangelos</au><au>Hamoudia, Mohsen</au><au>Makridakis, Spyros</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Forecasting with Artificial Intelligence: Theory and Applications</btitle><seriestitle>Palgrave Advances in the Economics of Innovation and Technology</seriestitle><date>2023</date><risdate>2023</risdate><issn>2662-3862</issn><eissn>2662-3870</eissn><isbn>3031358783</isbn><isbn>9783031358784</isbn><isbn>9783031358791</isbn><isbn>3031358791</isbn><eisbn>9783031358791</eisbn><eisbn>3031358791</eisbn><abstract>Part I. Artificial intelligence : present and future -- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA) -- 2. Expecting the future: How AI's potential performance will shape current behavior -- Part II. The status of machine learning methods for time series and new products forecasting -- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future -- 4. Machine Learning for New Product Forecasting -- Part III. Global forecasting models -- 5. Forecasting in Big Data with Global Forecasting Models -- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning -- 7. Handling Concept Drift in Global Time Series Forecasting -- 8. Neural network ensembles for univariate time series forecasting -- Part IV. Meta-learning and feature-based forecasting -- 9. Large scale time series forecasting with meta-learning -- 10. Forecasting large collections of time series: feature-based methods -- Part V. Special applications -- 11. Deep Learning based Forecasting: a case study from the online fashion industry -- 12. The intersection of machine learning with forecasting and optimisation: theory and applications -- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting -- 14. The FVA framework for evaluating forecasting performance. .</abstract><cop>Cham</cop><pub>Palgrave Macmillan</pub><doi>10.1007/978-3-031-35879-1</doi><oclcid>1399167366</oclcid><tpages>441</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 2662-3862
ispartof
issn 2662-3862
2662-3870
language eng
recordid cdi_askewsholts_vlebooks_9783031358791
source Springer Books
subjects Artificial Intelligence
Computer science
Economics
Economics and Finance
Economics, general
Forecasting
Technological innovations
Theory of Computation
title Forecasting with Artificial Intelligence: Theory and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Forecasting%20with%20Artificial%20Intelligence:%20Theory%20and%20Applications&rft.au=Hamoudia,%20Mohsen&rft.date=2023&rft.issn=2662-3862&rft.eissn=2662-3870&rft.isbn=3031358783&rft.isbn_list=9783031358784&rft.isbn_list=9783031358791&rft.isbn_list=3031358791&rft_id=info:doi/10.1007/978-3-031-35879-1&rft_dat=%3Cproquest_askew%3EEBC30750411%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031358791&rft.eisbn_list=3031358791&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC30750411&rft_id=info:pmid/&rfr_iscdi=true