Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization

This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Netzer, Tim, Plaumann, Daniel
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Netzer, Tim
Plaumann, Daniel
description This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry.
doi_str_mv 10.1007/978-3-031-26455-9
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031264559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7260464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1134x-9aa4da285a0b5e5b2f9b35510b7f32c1fbf56087847a6790c442d5c3ed0d6a443</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1TtKU_gFtOIA6m62fsI0SlVCrighA3y0kcCA1JG6dQ_j1JA4jT7mi-GWkXoTMCVwQgnOhQYYaBEUwlFwLrPTRkrdyp5300oFRL3O0HaNzCvx6nh3-eVMdoSJiiUreCn6Cx928AQJWSINgAnc9c9e6a-iuosmCRl87Wwb1t6nwbzEu33tgib3LnT9FRZgvvxj9zhJ5up4_RHV48zObR9QJbQhjfYm0tTy1VwkIsnIhppmMmBIE4zBhNSBZnQoIKFQ-tDDUknNNUJMylkErLORuhy77Y-qX79K9V0XjzUbi4qpbe_LtS6Jad9Kxf1Xn54mrTUwRM98CONsy0vNkFTJe46BOrulpvnG_MrjhxZVPbwkxvopBK4JKzb6nZZwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7260464</pqid></control><display><type>book</type><title>Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization</title><source>Springer Books</source><creator>Netzer, Tim ; Plaumann, Daniel</creator><creatorcontrib>Netzer, Tim ; Plaumann, Daniel</creatorcontrib><description>This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry.</description><edition>1</edition><identifier>ISSN: 2296-4568</identifier><identifier>ISBN: 9783031264542</identifier><identifier>ISBN: 3031264541</identifier><identifier>EISSN: 2296-455X</identifier><identifier>EISBN: 303126455X</identifier><identifier>EISBN: 9783031264559</identifier><identifier>DOI: 10.1007/978-3-031-26455-9</identifier><identifier>OCLC: 1382694564</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Convex domains ; Mathematics ; Mathematics and Statistics ; Matrix inequalities ; Optimization</subject><creationdate>2023</creationdate><tpages>167</tpages><format>167</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Compact Textbooks in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-26455-9</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-26455-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27904,38234,42490</link.rule.ids></links><search><creatorcontrib>Netzer, Tim</creatorcontrib><creatorcontrib>Plaumann, Daniel</creatorcontrib><title>Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization</title><description>This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Convex domains</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix inequalities</subject><subject>Optimization</subject><issn>2296-4568</issn><issn>2296-455X</issn><isbn>9783031264542</isbn><isbn>3031264541</isbn><isbn>303126455X</isbn><isbn>9783031264559</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkEtPwzAQhM1TtKU_gFtOIA6m62fsI0SlVCrighA3y0kcCA1JG6dQ_j1JA4jT7mi-GWkXoTMCVwQgnOhQYYaBEUwlFwLrPTRkrdyp5300oFRL3O0HaNzCvx6nh3-eVMdoSJiiUreCn6Cx928AQJWSINgAnc9c9e6a-iuosmCRl87Wwb1t6nwbzEu33tgib3LnT9FRZgvvxj9zhJ5up4_RHV48zObR9QJbQhjfYm0tTy1VwkIsnIhppmMmBIE4zBhNSBZnQoIKFQ-tDDUknNNUJMylkErLORuhy77Y-qX79K9V0XjzUbi4qpbe_LtS6Jad9Kxf1Xn54mrTUwRM98CONsy0vNkFTJe46BOrulpvnG_MrjhxZVPbwkxvopBK4JKzb6nZZwM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Netzer, Tim</creator><creator>Plaumann, Daniel</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2023</creationdate><title>Geometry of Linear Matrix Inequalities</title><author>Netzer, Tim ; Plaumann, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1134x-9aa4da285a0b5e5b2f9b35510b7f32c1fbf56087847a6790c442d5c3ed0d6a443</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Convex domains</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix inequalities</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Netzer, Tim</creatorcontrib><creatorcontrib>Plaumann, Daniel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netzer, Tim</au><au>Plaumann, Daniel</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization</btitle><seriestitle>Compact Textbooks in Mathematics</seriestitle><date>2023</date><risdate>2023</risdate><issn>2296-4568</issn><eissn>2296-455X</eissn><isbn>9783031264542</isbn><isbn>3031264541</isbn><eisbn>303126455X</eisbn><eisbn>9783031264559</eisbn><abstract>This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-031-26455-9</doi><oclcid>1382694564</oclcid><tpages>167</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 2296-4568
ispartof
issn 2296-4568
2296-455X
language eng
recordid cdi_askewsholts_vlebooks_9783031264559
source Springer Books
subjects Algebraic Geometry
Convex and Discrete Geometry
Convex domains
Mathematics
Mathematics and Statistics
Matrix inequalities
Optimization
title Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Geometry%20of%20Linear%20Matrix%20Inequalities:%20A%20Course%20in%20Convexity%20and%20Real%20Algebraic%20Geometry%20with%20a%20View%20Towards%20Optimization&rft.au=Netzer,%20Tim&rft.date=2023&rft.issn=2296-4568&rft.eissn=2296-455X&rft.isbn=9783031264542&rft.isbn_list=3031264541&rft_id=info:doi/10.1007/978-3-031-26455-9&rft_dat=%3Cproquest_askew%3EEBC7260464%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=303126455X&rft.eisbn_list=9783031264559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7260464&rft_id=info:pmid/&rfr_iscdi=true