Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Indu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lepore, Antonio Palumbo, Biagio Poggi, Jean-Michel |
description | This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples. |
doi_str_mv | 10.1007/978-3-031-12402-0 |
format | Book |
fullrecord | <record><control><sourceid>askewsholts_sprin</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031124020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9783031124020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a13823-4cb846e5604cfa572325a8672ab042f282a589d27f879a13ac98d7c1252694893</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhoMQEmjsB3DLlUM256NNym2a-Jg0tAOIa-S2KSur2ioJoP17so3LTrYfPa9lmZA7DjMOoOeFNkwykJxxoUAwuCDTxGQiRwCXZzOX12QawhcACC2F0vyGbFZ9dH70LmLZdm3c02bwdNXX3yH6PVUzoA_0LWJsQ2wr7Cj2NX3Fatv2jq4d-r7tP-liHP2QoAu35KrBLrjpf52Qj6fH9-ULW2-eV8vFmiGXRkimqtKo3GU5qKrBTAspMjS5FliCEo0wAjNT1EI3Rhcpg1Vhal1xkYm8UKaQE3J_Woxh537DduhisD-dK4dhF-zZF5I7P7lh9Olc5-3J4mAPfzzYVtrk22MgdX_YE2Ej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><source>Springer Books</source><creator>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel</creator><contributor>Lepore, Antonio ; Poggi, Jean-Michel ; Palumbo, Biagio</contributor><creatorcontrib>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel ; Lepore, Antonio ; Poggi, Jean-Michel ; Palumbo, Biagio</creatorcontrib><description>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</description><identifier>ISBN: 9783031124013</identifier><identifier>ISBN: 3031124014</identifier><identifier>EISBN: 9783031124020</identifier><identifier>EISBN: 3031124022</identifier><identifier>DOI: 10.1007/978-3-031-12402-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Industry 4.0 ; Machine learning ; Mathematics and Statistics ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subject><creationdate>2022</creationdate><tpages>1</tpages><format>1</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-12402-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-12402-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><contributor>Lepore, Antonio</contributor><contributor>Poggi, Jean-Michel</contributor><contributor>Palumbo, Biagio</contributor><creatorcontrib>Lepore, Antonio</creatorcontrib><creatorcontrib>Palumbo, Biagio</creatorcontrib><creatorcontrib>Poggi, Jean-Michel</creatorcontrib><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><description>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</description><subject>Industry 4.0</subject><subject>Machine learning</subject><subject>Mathematics and Statistics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subject><isbn>9783031124013</isbn><isbn>3031124014</isbn><isbn>9783031124020</isbn><isbn>3031124022</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkE1PwzAMhoMQEmjsB3DLlUM256NNym2a-Jg0tAOIa-S2KSur2ioJoP17so3LTrYfPa9lmZA7DjMOoOeFNkwykJxxoUAwuCDTxGQiRwCXZzOX12QawhcACC2F0vyGbFZ9dH70LmLZdm3c02bwdNXX3yH6PVUzoA_0LWJsQ2wr7Cj2NX3Fatv2jq4d-r7tP-liHP2QoAu35KrBLrjpf52Qj6fH9-ULW2-eV8vFmiGXRkimqtKo3GU5qKrBTAspMjS5FliCEo0wAjNT1EI3Rhcpg1Vhal1xkYm8UKaQE3J_Woxh537DduhisD-dK4dhF-zZF5I7P7lh9Olc5-3J4mAPfzzYVtrk22MgdX_YE2Ej</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Lepore, Antonio</creator><creator>Palumbo, Biagio</creator><creator>Poggi, Jean-Michel</creator><general>Springer International Publishing</general><scope/></search><sort><creationdate>20220711</creationdate><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><author>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a13823-4cb846e5604cfa572325a8672ab042f282a589d27f879a13ac98d7c1252694893</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Industry 4.0</topic><topic>Machine learning</topic><topic>Mathematics and Statistics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Antonio</creatorcontrib><creatorcontrib>Palumbo, Biagio</creatorcontrib><creatorcontrib>Poggi, Jean-Michel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Antonio</au><au>Palumbo, Biagio</au><au>Poggi, Jean-Michel</au><au>Lepore, Antonio</au><au>Poggi, Jean-Michel</au><au>Palumbo, Biagio</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</btitle><date>2022-07-11</date><risdate>2022</risdate><isbn>9783031124013</isbn><isbn>3031124014</isbn><eisbn>9783031124020</eisbn><eisbn>3031124022</eisbn><abstract>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/978-3-031-12402-0</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9783031124013 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783031124020 |
source | Springer Books |
subjects | Industry 4.0 Machine learning Mathematics and Statistics Statistical Theory and Methods Statistics Statistics for Business, Management, Economics, Finance, Insurance Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences |
title | Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-askewsholts_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Interpretability%20for%20Industry%204.0%20:%20Statistical%20and%20Machine%20Learning%20Approaches&rft.au=Lepore,%20Antonio&rft.date=2022-07-11&rft.isbn=9783031124013&rft.isbn_list=3031124014&rft_id=info:doi/10.1007/978-3-031-12402-0&rft_dat=%3Caskewsholts_sprin%3E9783031124020%3C/askewsholts_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031124020&rft.eisbn_list=3031124022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |