Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches

This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lepore, Antonio, Palumbo, Biagio, Poggi, Jean-Michel
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lepore, Antonio
Palumbo, Biagio
Poggi, Jean-Michel
description This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
doi_str_mv 10.1007/978-3-031-12402-0
format Book
fullrecord <record><control><sourceid>askewsholts_sprin</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783031124020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9783031124020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a13823-4cb846e5604cfa572325a8672ab042f282a589d27f879a13ac98d7c1252694893</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhoMQEmjsB3DLlUM256NNym2a-Jg0tAOIa-S2KSur2ioJoP17so3LTrYfPa9lmZA7DjMOoOeFNkwykJxxoUAwuCDTxGQiRwCXZzOX12QawhcACC2F0vyGbFZ9dH70LmLZdm3c02bwdNXX3yH6PVUzoA_0LWJsQ2wr7Cj2NX3Fatv2jq4d-r7tP-liHP2QoAu35KrBLrjpf52Qj6fH9-ULW2-eV8vFmiGXRkimqtKo3GU5qKrBTAspMjS5FliCEo0wAjNT1EI3Rhcpg1Vhal1xkYm8UKaQE3J_Woxh537DduhisD-dK4dhF-zZF5I7P7lh9Olc5-3J4mAPfzzYVtrk22MgdX_YE2Ej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><source>Springer Books</source><creator>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel</creator><contributor>Lepore, Antonio ; Poggi, Jean-Michel ; Palumbo, Biagio</contributor><creatorcontrib>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel ; Lepore, Antonio ; Poggi, Jean-Michel ; Palumbo, Biagio</creatorcontrib><description>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</description><identifier>ISBN: 9783031124013</identifier><identifier>ISBN: 3031124014</identifier><identifier>EISBN: 9783031124020</identifier><identifier>EISBN: 3031124022</identifier><identifier>DOI: 10.1007/978-3-031-12402-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Industry 4.0 ; Machine learning ; Mathematics and Statistics ; Statistical Theory and Methods ; Statistics ; Statistics for Business, Management, Economics, Finance, Insurance ; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subject><creationdate>2022</creationdate><tpages>1</tpages><format>1</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-031-12402-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-12402-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><contributor>Lepore, Antonio</contributor><contributor>Poggi, Jean-Michel</contributor><contributor>Palumbo, Biagio</contributor><creatorcontrib>Lepore, Antonio</creatorcontrib><creatorcontrib>Palumbo, Biagio</creatorcontrib><creatorcontrib>Poggi, Jean-Michel</creatorcontrib><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><description>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</description><subject>Industry 4.0</subject><subject>Machine learning</subject><subject>Mathematics and Statistics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business, Management, Economics, Finance, Insurance</subject><subject>Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subject><isbn>9783031124013</isbn><isbn>3031124014</isbn><isbn>9783031124020</isbn><isbn>3031124022</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkE1PwzAMhoMQEmjsB3DLlUM256NNym2a-Jg0tAOIa-S2KSur2ioJoP17so3LTrYfPa9lmZA7DjMOoOeFNkwykJxxoUAwuCDTxGQiRwCXZzOX12QawhcACC2F0vyGbFZ9dH70LmLZdm3c02bwdNXX3yH6PVUzoA_0LWJsQ2wr7Cj2NX3Fatv2jq4d-r7tP-liHP2QoAu35KrBLrjpf52Qj6fH9-ULW2-eV8vFmiGXRkimqtKo3GU5qKrBTAspMjS5FliCEo0wAjNT1EI3Rhcpg1Vhal1xkYm8UKaQE3J_Woxh537DduhisD-dK4dhF-zZF5I7P7lh9Olc5-3J4mAPfzzYVtrk22MgdX_YE2Ej</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Lepore, Antonio</creator><creator>Palumbo, Biagio</creator><creator>Poggi, Jean-Michel</creator><general>Springer International Publishing</general><scope/></search><sort><creationdate>20220711</creationdate><title>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</title><author>Lepore, Antonio ; Palumbo, Biagio ; Poggi, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a13823-4cb846e5604cfa572325a8672ab042f282a589d27f879a13ac98d7c1252694893</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Industry 4.0</topic><topic>Machine learning</topic><topic>Mathematics and Statistics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business, Management, Economics, Finance, Insurance</topic><topic>Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Antonio</creatorcontrib><creatorcontrib>Palumbo, Biagio</creatorcontrib><creatorcontrib>Poggi, Jean-Michel</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Antonio</au><au>Palumbo, Biagio</au><au>Poggi, Jean-Michel</au><au>Lepore, Antonio</au><au>Poggi, Jean-Michel</au><au>Palumbo, Biagio</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches</btitle><date>2022-07-11</date><risdate>2022</risdate><isbn>9783031124013</isbn><isbn>3031124014</isbn><eisbn>9783031124020</eisbn><eisbn>3031124022</eisbn><abstract>This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/978-3-031-12402-0</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9783031124013
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9783031124020
source Springer Books
subjects Industry 4.0
Machine learning
Mathematics and Statistics
Statistical Theory and Methods
Statistics
Statistics for Business, Management, Economics, Finance, Insurance
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
title Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-askewsholts_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Interpretability%20for%20Industry%204.0%20:%20Statistical%20and%20Machine%20Learning%20Approaches&rft.au=Lepore,%20Antonio&rft.date=2022-07-11&rft.isbn=9783031124013&rft.isbn_list=3031124014&rft_id=info:doi/10.1007/978-3-031-12402-0&rft_dat=%3Caskewsholts_sprin%3E9783031124020%3C/askewsholts_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031124020&rft.eisbn_list=3031124022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true