Automating Data-Driven Modelling of Dynamical Systems: An Evolutionary Computation Approach
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user'...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Khandelwal, Dhruv |
description | This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification. |
doi_str_mv | 10.1007/978-3-030-90343-5 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030903435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6882519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1269x-e58a78b937cb0ed8bf4f17d503b9cda92744baf85702f48a506255c2c32e4a173</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhM1T0NIfwC03xMF0bcexfSxteUhFHEBcLSdxoNSNS5wW-u9JGkDitNLMN6vdQeicwBUBEEMlJGYYGGAFLGaY76FBo7FG2Ql8H51SogBzSMgB6v0aVBz-GZwdox6hiieENf4JGoTwDgBUEMVFcor4aF37pann5Ws0MbXBk2q-sWX04HPrXKv6IppsS7OcZ8ZFT9tQ22U4Q0eFccEOfmYfvdxMn8d3ePZ4ez8ezbAhNFFf2HJphEwVE1kKNpdpERdE5BxYqrLcKCriODWF5AJoEUvTfEI5z2jGqI0NEayPLrvFJizsZ3jzrg5642zq_SLof2007LBjw6pqDreV7igCuu2zpTXTDa93Ad0mLrrEqvIfaxtqvVuc2bKujNPT63EiJeVEsW9jcGwN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6882519</pqid></control><display><type>book</type><title>Automating Data-Driven Modelling of Dynamical Systems: An Evolutionary Computation Approach</title><source>Springer Books</source><creator>Khandelwal, Dhruv</creator><creatorcontrib>Khandelwal, Dhruv</creatorcontrib><description>This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.</description><edition>1</edition><identifier>ISSN: 2190-5053</identifier><identifier>ISBN: 3030903427</identifier><identifier>ISBN: 9783030903428</identifier><identifier>EISSN: 2190-5061</identifier><identifier>EISBN: 9783030903435</identifier><identifier>EISBN: 3030903435</identifier><identifier>DOI: 10.1007/978-3-030-90343-5</identifier><identifier>OCLC: 1295613303</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Complexity ; Computational Intelligence ; Control and Systems Theory ; Dynamics ; Dynamics-Mathematical models ; Engineering</subject><creationdate>2022</creationdate><tpages>250</tpages><format>250</format><rights>The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Theses</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-90343-5</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-90343-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27904,38234,42490</link.rule.ids></links><search><creatorcontrib>Khandelwal, Dhruv</creatorcontrib><title>Automating Data-Driven Modelling of Dynamical Systems: An Evolutionary Computation Approach</title><description>This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.</description><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Control and Systems Theory</subject><subject>Dynamics</subject><subject>Dynamics-Mathematical models</subject><subject>Engineering</subject><issn>2190-5053</issn><issn>2190-5061</issn><isbn>3030903427</isbn><isbn>9783030903428</isbn><isbn>9783030903435</isbn><isbn>3030903435</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkEtPwzAQhM1T0NIfwC03xMF0bcexfSxteUhFHEBcLSdxoNSNS5wW-u9JGkDitNLMN6vdQeicwBUBEEMlJGYYGGAFLGaY76FBo7FG2Ql8H51SogBzSMgB6v0aVBz-GZwdox6hiieENf4JGoTwDgBUEMVFcor4aF37pann5Ws0MbXBk2q-sWX04HPrXKv6IppsS7OcZ8ZFT9tQ22U4Q0eFccEOfmYfvdxMn8d3ePZ4ez8ezbAhNFFf2HJphEwVE1kKNpdpERdE5BxYqrLcKCriODWF5AJoEUvTfEI5z2jGqI0NEayPLrvFJizsZ3jzrg5642zq_SLof2007LBjw6pqDreV7igCuu2zpTXTDa93Ad0mLrrEqvIfaxtqvVuc2bKujNPT63EiJeVEsW9jcGwN</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khandelwal, Dhruv</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2022</creationdate><title>Automating Data-Driven Modelling of Dynamical Systems</title><author>Khandelwal, Dhruv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1269x-e58a78b937cb0ed8bf4f17d503b9cda92744baf85702f48a506255c2c32e4a173</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Control and Systems Theory</topic><topic>Dynamics</topic><topic>Dynamics-Mathematical models</topic><topic>Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Dhruv</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khandelwal, Dhruv</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Automating Data-Driven Modelling of Dynamical Systems: An Evolutionary Computation Approach</btitle><seriestitle>Springer Theses</seriestitle><date>2022</date><risdate>2022</risdate><issn>2190-5053</issn><eissn>2190-5061</eissn><isbn>3030903427</isbn><isbn>9783030903428</isbn><eisbn>9783030903435</eisbn><eisbn>3030903435</eisbn><abstract>This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-90343-5</doi><oclcid>1295613303</oclcid><tpages>250</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5053 |
ispartof | |
issn | 2190-5053 2190-5061 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030903435 |
source | Springer Books |
subjects | Complexity Computational Intelligence Control and Systems Theory Dynamics Dynamics-Mathematical models Engineering |
title | Automating Data-Driven Modelling of Dynamical Systems: An Evolutionary Computation Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Automating%20Data-Driven%20Modelling%20of%20Dynamical%20Systems:%20An%20Evolutionary%20Computation%20Approach&rft.au=Khandelwal,%20Dhruv&rft.date=2022&rft.issn=2190-5053&rft.eissn=2190-5061&rft.isbn=3030903427&rft.isbn_list=9783030903428&rft_id=info:doi/10.1007/978-3-030-90343-5&rft_dat=%3Cproquest_askew%3EEBC6882519%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030903435&rft.eisbn_list=3030903435&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6882519&rft_id=info:pmid/&rfr_iscdi=true |