Geometric Singular Perturbation Theory Beyond the Standard Form
This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).It is the first...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 6 |
creator | Wechselberger, Martin |
description | This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales. |
doi_str_mv | 10.1007/978-3-030-36399-4 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030363994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6121774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1999x-e29fdb9a17682a3eb77b02ca9d8f95bc2f086cf608126b7ab16d3445deb23aa53</originalsourceid><addsrcrecordid>eNpFkEtPAjEUheszAvID3M3OuKj0MdPHyggBNCHRBOK2aWc6ggxTbIvKv3cAH6ubk_Odk9wDwBVGtxgh3pNcQAoRRZAyKiVMj0CbNnKv2DFoEcpSmEqKT_4NIU5_jYySc9DGOCUZkSzjF6AbwhtCiBDBeZq1wN3YupWNfpEn00X9uqm0T56tjxtvdFy4OpnNrfPbpG-3ri6SOLfJNOq60L5IRs6vLsFZqatguz-3A15Gw9ngAU6exo-D-wnUWEr5BS2RZWGkxpwJoqk1nBtEci0LUcrM5KREguUlQwITZrg2mBU0TbPCGkK1zmgH3ByKdVjazzB3VQzqo7LGuWVQzVB_u6QN2zuwYe2bp6xXBwojtZt1RyuqGl7tA2qXuD4k1t69b2yIal-c2zp6Xalhf8Awwc1k9BtZzXAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6121774</pqid></control><display><type>book</type><title>Geometric Singular Perturbation Theory Beyond the Standard Form</title><source>Springer Books</source><creator>Wechselberger, Martin</creator><creatorcontrib>Wechselberger, Martin</creatorcontrib><description>This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.</description><edition>1st ed. 2020.</edition><identifier>ISSN: 2364-4532</identifier><identifier>ISBN: 3030363988</identifier><identifier>ISBN: 9783030363987</identifier><identifier>EISSN: 2364-4931</identifier><identifier>EISBN: 3030363996</identifier><identifier>EISBN: 9783030363994</identifier><identifier>DOI: 10.1007/978-3-030-36399-4</identifier><identifier>OCLC: 1142529657</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Ordinary Differential Equations ; Singular perturbations (Mathematics)</subject><creationdate>2020</creationdate><tpages>143</tpages><format>143</format><rights>Springer Nature Switzerland AG 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1999x-e29fdb9a17682a3eb77b02ca9d8f95bc2f086cf608126b7ab16d3445deb23aa53</citedby><relation>Frontiers in Applied Dynamical Systems: Reviews and Tutorials</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-36399-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-36399-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Wechselberger, Martin</creatorcontrib><title>Geometric Singular Perturbation Theory Beyond the Standard Form</title><description>This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Ordinary Differential Equations</subject><subject>Singular perturbations (Mathematics)</subject><issn>2364-4532</issn><issn>2364-4931</issn><isbn>3030363988</isbn><isbn>9783030363987</isbn><isbn>3030363996</isbn><isbn>9783030363994</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2020</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpFkEtPAjEUheszAvID3M3OuKj0MdPHyggBNCHRBOK2aWc6ggxTbIvKv3cAH6ubk_Odk9wDwBVGtxgh3pNcQAoRRZAyKiVMj0CbNnKv2DFoEcpSmEqKT_4NIU5_jYySc9DGOCUZkSzjF6AbwhtCiBDBeZq1wN3YupWNfpEn00X9uqm0T56tjxtvdFy4OpnNrfPbpG-3ri6SOLfJNOq60L5IRs6vLsFZqatguz-3A15Gw9ngAU6exo-D-wnUWEr5BS2RZWGkxpwJoqk1nBtEci0LUcrM5KREguUlQwITZrg2mBU0TbPCGkK1zmgH3ByKdVjazzB3VQzqo7LGuWVQzVB_u6QN2zuwYe2bp6xXBwojtZt1RyuqGl7tA2qXuD4k1t69b2yIal-c2zp6Xalhf8Awwc1k9BtZzXAg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wechselberger, Martin</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope/></search><sort><creationdate>2020</creationdate><title>Geometric Singular Perturbation Theory Beyond the Standard Form</title><author>Wechselberger, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1999x-e29fdb9a17682a3eb77b02ca9d8f95bc2f086cf608126b7ab16d3445deb23aa53</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Ordinary Differential Equations</topic><topic>Singular perturbations (Mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wechselberger, Martin</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wechselberger, Martin</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Geometric Singular Perturbation Theory Beyond the Standard Form</btitle><seriestitle>Frontiers in Applied Dynamical Systems: Reviews and Tutorials</seriestitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issn>2364-4532</issn><eissn>2364-4931</eissn><isbn>3030363988</isbn><isbn>9783030363987</isbn><eisbn>3030363996</eisbn><eisbn>9783030363994</eisbn><abstract>This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-36399-4</doi><oclcid>1142529657</oclcid><tpages>143</tpages><edition>1st ed. 2020.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2364-4532 |
ispartof | |
issn | 2364-4532 2364-4931 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030363994 |
source | Springer Books |
subjects | Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Operator Theory Ordinary Differential Equations Singular perturbations (Mathematics) |
title | Geometric Singular Perturbation Theory Beyond the Standard Form |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Geometric%20Singular%20Perturbation%20Theory%20Beyond%20the%20Standard%20Form&rft.au=Wechselberger,%20Martin&rft.date=2020&rft.volume=6&rft.issn=2364-4532&rft.eissn=2364-4931&rft.isbn=3030363988&rft.isbn_list=9783030363987&rft_id=info:doi/10.1007/978-3-030-36399-4&rft_dat=%3Cproquest_askew%3EEBC6121774%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030363996&rft.eisbn_list=9783030363994&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6121774&rft_id=info:pmid/&rfr_iscdi=true |