Numerical Nonsmooth Optimization: State of the Art Algorithms

Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bagirov, Adil M, Gaudioso, Manlio, Karmitsa, Napsu, Mäkelä, Marko M, Taheri, Sona
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bagirov, Adil M
Gaudioso, Manlio
Karmitsa, Napsu
Mäkelä, Marko M
Taheri, Sona
description Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO.  The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization. 
doi_str_mv 10.1007/978-3-030-34910-3
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030349103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6126819</sourcerecordid><originalsourceid>FETCH-LOGICAL-a17855-e82e55e264f6691b9b14bb9346ca1429a368ad93f7c1862f664c060597bb188e3</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhI0QCCj9Adx6QxxCd_32EaLykKr2grhadnBpaBqXOKUSv5604QCXXe3om5FmCblCuEUANTZKZywDBhnjBrt5RIadxjrlILDjvzcYdUouEDmTnAolzsgwpQ8AoFRrBeqcjGbbdWjKwlWjWazTOsZ2OZpv2nJdfru2jPUlOVm4KoXh7x6Q14fJS_6UTeePz_ndNHOotBBZ0DQIEajkCykNeuORe28Yl4VDTo1jUrs3wxaqQC1pB_ECJAijvEetAxuQmz7YpVXYpWWs2mS_quBjXCX7r2PHjns2bZqyfg-N7SkEu__SnrbMdrw9GOzecd07Nk383IbU2kNwEeq2cZWd3OcSqdRo2A-cu2Dy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6126819</pqid></control><display><type>book</type><title>Numerical Nonsmooth Optimization: State of the Art Algorithms</title><source>Springer Books</source><creator>Bagirov, Adil M ; Gaudioso, Manlio ; Karmitsa, Napsu ; Mäkelä, Marko M ; Taheri, Sona</creator><contributor>Taheri, Sona ; Karmitsa, Napsu ; Mäkelä, Marko M. ; Gaudioso, Manlio ; Bagirov, Adil M.</contributor><creatorcontrib>Bagirov, Adil M ; Gaudioso, Manlio ; Karmitsa, Napsu ; Mäkelä, Marko M ; Taheri, Sona ; Taheri, Sona ; Karmitsa, Napsu ; Mäkelä, Marko M. ; Gaudioso, Manlio ; Bagirov, Adil M.</creatorcontrib><description>Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO.  The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization. </description><edition>1st ed. 2020.</edition><identifier>ISBN: 9783030349097</identifier><identifier>ISBN: 3030349098</identifier><identifier>EISBN: 9783030349103</identifier><identifier>EISBN: 3030349101</identifier><identifier>DOI: 10.1007/978-3-030-34910-3</identifier><identifier>OCLC: 1143642575</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Data Mining and Knowledge Discovery ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics ; Mathematics and Statistics ; Nonsmooth optimization ; Numeric Computing ; Operations Research, Management Science ; Operations Research/Decision Theory</subject><creationdate>2020</creationdate><tpages>696</tpages><format>696</format><rights>Springer Nature Switzerland AG 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-34910-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-34910-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><contributor>Taheri, Sona</contributor><contributor>Karmitsa, Napsu</contributor><contributor>Mäkelä, Marko M.</contributor><contributor>Gaudioso, Manlio</contributor><contributor>Bagirov, Adil M.</contributor><creatorcontrib>Bagirov, Adil M</creatorcontrib><creatorcontrib>Gaudioso, Manlio</creatorcontrib><creatorcontrib>Karmitsa, Napsu</creatorcontrib><creatorcontrib>Mäkelä, Marko M</creatorcontrib><creatorcontrib>Taheri, Sona</creatorcontrib><title>Numerical Nonsmooth Optimization: State of the Art Algorithms</title><description>Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO.  The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization. </description><subject>Data Mining and Knowledge Discovery</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonsmooth optimization</subject><subject>Numeric Computing</subject><subject>Operations Research, Management Science</subject><subject>Operations Research/Decision Theory</subject><isbn>9783030349097</isbn><isbn>3030349098</isbn><isbn>9783030349103</isbn><isbn>3030349101</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2020</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkEtPwzAQhI0QCCj9Adx6QxxCd_32EaLykKr2grhadnBpaBqXOKUSv5604QCXXe3om5FmCblCuEUANTZKZywDBhnjBrt5RIadxjrlILDjvzcYdUouEDmTnAolzsgwpQ8AoFRrBeqcjGbbdWjKwlWjWazTOsZ2OZpv2nJdfru2jPUlOVm4KoXh7x6Q14fJS_6UTeePz_ndNHOotBBZ0DQIEajkCykNeuORe28Yl4VDTo1jUrs3wxaqQC1pB_ECJAijvEetAxuQmz7YpVXYpWWs2mS_quBjXCX7r2PHjns2bZqyfg-N7SkEu__SnrbMdrw9GOzecd07Nk383IbU2kNwEeq2cZWd3OcSqdRo2A-cu2Dy</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bagirov, Adil M</creator><creator>Gaudioso, Manlio</creator><creator>Karmitsa, Napsu</creator><creator>Mäkelä, Marko M</creator><creator>Taheri, Sona</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope/></search><sort><creationdate>2020</creationdate><title>Numerical Nonsmooth Optimization</title><author>Bagirov, Adil M ; Gaudioso, Manlio ; Karmitsa, Napsu ; Mäkelä, Marko M ; Taheri, Sona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a17855-e82e55e264f6691b9b14bb9346ca1429a368ad93f7c1862f664c060597bb188e3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data Mining and Knowledge Discovery</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonsmooth optimization</topic><topic>Numeric Computing</topic><topic>Operations Research, Management Science</topic><topic>Operations Research/Decision Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bagirov, Adil M</creatorcontrib><creatorcontrib>Gaudioso, Manlio</creatorcontrib><creatorcontrib>Karmitsa, Napsu</creatorcontrib><creatorcontrib>Mäkelä, Marko M</creatorcontrib><creatorcontrib>Taheri, Sona</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagirov, Adil M</au><au>Gaudioso, Manlio</au><au>Karmitsa, Napsu</au><au>Mäkelä, Marko M</au><au>Taheri, Sona</au><au>Taheri, Sona</au><au>Karmitsa, Napsu</au><au>Mäkelä, Marko M.</au><au>Gaudioso, Manlio</au><au>Bagirov, Adil M.</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Numerical Nonsmooth Optimization: State of the Art Algorithms</btitle><date>2020</date><risdate>2020</risdate><isbn>9783030349097</isbn><isbn>3030349098</isbn><eisbn>9783030349103</eisbn><eisbn>3030349101</eisbn><abstract>Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO.  The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization. </abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-34910-3</doi><oclcid>1143642575</oclcid><tpages>696</tpages><edition>1st ed. 2020.</edition></addata></record>
fulltext fulltext
identifier ISBN: 9783030349097
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9783030349103
source Springer Books
subjects Data Mining and Knowledge Discovery
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics
Mathematics and Statistics
Nonsmooth optimization
Numeric Computing
Operations Research, Management Science
Operations Research/Decision Theory
title Numerical Nonsmooth Optimization: State of the Art Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Numerical%20Nonsmooth%20Optimization:%20State%20of%20the%20Art%20Algorithms&rft.au=Bagirov,%20Adil%20M&rft.date=2020&rft.isbn=9783030349097&rft.isbn_list=3030349098&rft_id=info:doi/10.1007/978-3-030-34910-3&rft_dat=%3Cproquest_askew%3EEBC6126819%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030349103&rft.eisbn_list=3030349101&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6126819&rft_id=info:pmid/&rfr_iscdi=true