Unstable Systems
This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are crit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Horwitz, Lawrence |
description | This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications. |
doi_str_mv | 10.1007/978-3-030-31570-2 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030315702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6226708</sourcerecordid><originalsourceid>FETCH-LOGICAL-a17848-9cbcf7a4d6b4e9b44905ada93cb4da1be4bc7c9e95913d3307c3d9504a63dc8d3</originalsourceid><addsrcrecordid>eNpdkDlPAzEQhc0pQohES4doEIXJ2OO11yVE4ZAiUXC0lq8cZNkN6wXEv2eTpYFqpDffe3MQcsLgkgGooVY5RQoIFFmmgPItMmg1bJWNwLdJj2PGKWrIdv71dkkPNGcUlVT75JCxTDMFGfIDMkjpFQC44DJXokeOn8vUWFfE08fv1MS3dET2prZIcfBb--TlZvw0uqOTh9v70dWEWqZykVPtnZ8qK4J0ImonRLuHDVajdyJY5qJwXnkddTsbAyIoj0FnIKzE4POAfXLRBdu0jF9pXhVNMp9FdFW1TObPPS077Ni0qhflLNamoxiY9bfWtEHT8mZjMGvHeedY1dX7R0yN2QT7WDa1Lcz4eiQ5lwryljzrSG-TLRblwrxVZTWr7WqeTCaEFJrjD_fda2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6226708</pqid></control><display><type>book</type><title>Unstable Systems</title><source>Springer Books</source><creator>Horwitz, Lawrence</creator><contributor>Strauss, Yosef</contributor><creatorcontrib>Horwitz, Lawrence ; Strauss, Yosef</creatorcontrib><description>This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.</description><edition>1st ed. 2020.</edition><identifier>ISSN: 0921-3767</identifier><identifier>ISBN: 9783030315702</identifier><identifier>ISBN: 3030315703</identifier><identifier>ISBN: 9783030315696</identifier><identifier>ISBN: 303031569X</identifier><identifier>EISSN: 2352-3905</identifier><identifier>EISBN: 9783030315702</identifier><identifier>EISBN: 3030315703</identifier><identifier>DOI: 10.1007/978-3-030-31570-2</identifier><identifier>OCLC: 1159170532</identifier><language>eng</language><publisher>Cham: Springer Nature</publisher><subject>Elementary Particles, Quantum Field Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics</subject><creationdate>2020</creationdate><tpages>229</tpages><format>229</format><rights>Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Mathematical Physics Studies</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-31570-2</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-31570-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><contributor>Strauss, Yosef</contributor><creatorcontrib>Horwitz, Lawrence</creatorcontrib><title>Unstable Systems</title><description>This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.</description><subject>Elementary Particles, Quantum Field Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><issn>0921-3767</issn><issn>2352-3905</issn><isbn>9783030315702</isbn><isbn>3030315703</isbn><isbn>9783030315696</isbn><isbn>303031569X</isbn><isbn>9783030315702</isbn><isbn>3030315703</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2020</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkDlPAzEQhc0pQohES4doEIXJ2OO11yVE4ZAiUXC0lq8cZNkN6wXEv2eTpYFqpDffe3MQcsLgkgGooVY5RQoIFFmmgPItMmg1bJWNwLdJj2PGKWrIdv71dkkPNGcUlVT75JCxTDMFGfIDMkjpFQC44DJXokeOn8vUWFfE08fv1MS3dET2prZIcfBb--TlZvw0uqOTh9v70dWEWqZykVPtnZ8qK4J0ImonRLuHDVajdyJY5qJwXnkddTsbAyIoj0FnIKzE4POAfXLRBdu0jF9pXhVNMp9FdFW1TObPPS077Ni0qhflLNamoxiY9bfWtEHT8mZjMGvHeedY1dX7R0yN2QT7WDa1Lcz4eiQ5lwryljzrSG-TLRblwrxVZTWr7WqeTCaEFJrjD_fda2Y</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Horwitz, Lawrence</creator><general>Springer Nature</general><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2020</creationdate><title>Unstable Systems</title><author>Horwitz, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a17848-9cbcf7a4d6b4e9b44905ada93cb4da1be4bc7c9e95913d3307c3d9504a63dc8d3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elementary Particles, Quantum Field Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horwitz, Lawrence</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horwitz, Lawrence</au><au>Strauss, Yosef</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Unstable Systems</btitle><seriestitle>Mathematical Physics Studies</seriestitle><date>2020</date><risdate>2020</risdate><issn>0921-3767</issn><eissn>2352-3905</eissn><isbn>9783030315702</isbn><isbn>3030315703</isbn><isbn>9783030315696</isbn><isbn>303031569X</isbn><eisbn>9783030315702</eisbn><eisbn>3030315703</eisbn><abstract>This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.</abstract><cop>Cham</cop><pub>Springer Nature</pub><doi>10.1007/978-3-030-31570-2</doi><oclcid>1159170532</oclcid><tpages>229</tpages><edition>1st ed. 2020.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-3767 |
ispartof | |
issn | 0921-3767 2352-3905 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030315702 |
source | Springer Books |
subjects | Elementary Particles, Quantum Field Theory Mathematical Physics Physics Physics and Astronomy Quantum Physics |
title | Unstable Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Unstable%20Systems&rft.au=Horwitz,%20Lawrence&rft.date=2020&rft.issn=0921-3767&rft.eissn=2352-3905&rft.isbn=9783030315702&rft.isbn_list=3030315703&rft.isbn_list=9783030315696&rft.isbn_list=303031569X&rft_id=info:doi/10.1007/978-3-030-31570-2&rft_dat=%3Cproquest_askew%3EEBC6226708%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030315702&rft.eisbn_list=3030315703&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6226708&rft_id=info:pmid/&rfr_iscdi=true |