Bifurcation and Stability in Nonlinear Dynamical Systems
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equili...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 28 |
creator | Luo, Albert C. J |
description | This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;Discusses dynamics of infinite-equilibrium systems;Demonstrates higher-order singularity. |
doi_str_mv | 10.1007/978-3-030-22910-8 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030229108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6033481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a15985-e4e753c51bc149dc3c879350f9fd9f41f50abca56060a2ba1891e8da45aecfc93</originalsourceid><addsrcrecordid>eNpVkD1PwzAYhM2naEt_AFs2xGD62o4TvyMt5UOqYChitRzHgdA0KXEK6r8nTbownXT33A1HyBWDWwYQTzBWVFAQQDlHBlQdkXHridbpDHVMBpxhRAFAnJDhIQDkp10gKSKG52TImEDkKHh4Qcbef7U85yqKFAyImubZtramyasyMGUaLBuT5EXe7IK8DF6qsshLZ-rgfleadW5NESx3vnFrf0nOMlN4Nz7oiLw_zN9mT3Tx-vg8u1tQwyQqSV3oYimsZIllIaZWWBWjkJBhlmIWskyCSayREURgeGKYQuZUakJpnM0sihG56YeNX7lf_1kVjdc_hUuqauX1v0NadtKzflPn5YerdU8x0PtL97QWuuV1V9D7xnXf2NTV99b5RnfD1pVNbQo9n84iECJUTPwBeJRt9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6033481</pqid></control><display><type>book</type><title>Bifurcation and Stability in Nonlinear Dynamical Systems</title><source>Springer Books</source><creator>Luo, Albert C. J</creator><creatorcontrib>Luo, Albert C. J</creatorcontrib><description>This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;Discusses dynamics of infinite-equilibrium systems;Demonstrates higher-order singularity.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 2195-9994</identifier><identifier>ISBN: 3030229092</identifier><identifier>ISBN: 9783030229092</identifier><identifier>EISSN: 2196-0003</identifier><identifier>EISBN: 9783030229108</identifier><identifier>EISBN: 3030229106</identifier><identifier>DOI: 10.1007/978-3-030-22910-8</identifier><identifier>OCLC: 1139929324</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Complexity ; Differential equations, Nonlinear-Numerical solutions ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Vibration, Dynamical Systems, Control</subject><creationdate>2020</creationdate><tpages>418</tpages><format>418</format><rights>Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Nonlinear Systems and Complexity</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-22910-8</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-22910-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Luo, Albert C. J</creatorcontrib><title>Bifurcation and Stability in Nonlinear Dynamical Systems</title><description>This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;Discusses dynamics of infinite-equilibrium systems;Demonstrates higher-order singularity.</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Complexity</subject><subject>Differential equations, Nonlinear-Numerical solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Vibration, Dynamical Systems, Control</subject><issn>2195-9994</issn><issn>2196-0003</issn><isbn>3030229092</isbn><isbn>9783030229092</isbn><isbn>9783030229108</isbn><isbn>3030229106</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2020</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkD1PwzAYhM2naEt_AFs2xGD62o4TvyMt5UOqYChitRzHgdA0KXEK6r8nTbownXT33A1HyBWDWwYQTzBWVFAQQDlHBlQdkXHridbpDHVMBpxhRAFAnJDhIQDkp10gKSKG52TImEDkKHh4Qcbef7U85yqKFAyImubZtramyasyMGUaLBuT5EXe7IK8DF6qsshLZ-rgfleadW5NESx3vnFrf0nOMlN4Nz7oiLw_zN9mT3Tx-vg8u1tQwyQqSV3oYimsZIllIaZWWBWjkJBhlmIWskyCSayREURgeGKYQuZUakJpnM0sihG56YeNX7lf_1kVjdc_hUuqauX1v0NadtKzflPn5YerdU8x0PtL97QWuuV1V9D7xnXf2NTV99b5RnfD1pVNbQo9n84iECJUTPwBeJRt9A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Luo, Albert C. J</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope/></search><sort><creationdate>2020</creationdate><title>Bifurcation and Stability in Nonlinear Dynamical Systems</title><author>Luo, Albert C. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a15985-e4e753c51bc149dc3c879350f9fd9f41f50abca56060a2ba1891e8da45aecfc93</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Complexity</topic><topic>Differential equations, Nonlinear-Numerical solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Vibration, Dynamical Systems, Control</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Albert C. J</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Albert C. J</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Bifurcation and Stability in Nonlinear Dynamical Systems</btitle><seriestitle>Nonlinear Systems and Complexity</seriestitle><date>2020</date><risdate>2020</risdate><volume>28</volume><issn>2195-9994</issn><eissn>2196-0003</eissn><isbn>3030229092</isbn><isbn>9783030229092</isbn><eisbn>9783030229108</eisbn><eisbn>3030229106</eisbn><abstract>This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;Discusses dynamics of infinite-equilibrium systems;Demonstrates higher-order singularity.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-22910-8</doi><oclcid>1139929324</oclcid><tpages>418</tpages><edition>1st ed. 2019.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-9994 |
ispartof | |
issn | 2195-9994 2196-0003 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030229108 |
source | Springer Books |
subjects | Applications of Nonlinear Dynamics and Chaos Theory Complexity Differential equations, Nonlinear-Numerical solutions Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Vibration, Dynamical Systems, Control |
title | Bifurcation and Stability in Nonlinear Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Bifurcation%20and%20Stability%20in%20Nonlinear%20Dynamical%20Systems&rft.au=Luo,%20Albert%20C.%20J&rft.date=2020&rft.volume=28&rft.issn=2195-9994&rft.eissn=2196-0003&rft.isbn=3030229092&rft.isbn_list=9783030229092&rft_id=info:doi/10.1007/978-3-030-22910-8&rft_dat=%3Cproquest_askew%3EEBC6033481%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030229108&rft.eisbn_list=3030229106&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6033481&rft_id=info:pmid/&rfr_iscdi=true |