Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science

This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hong, Huixiao
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 30
creator Hong, Huixiao
description This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.
doi_str_mv 10.1007/978-3-030-16443-0
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030164430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5779981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a17161-6dd4b9b5073911e84cf4837b4437963fa25f010ae08e8105fa29ab90d0c3e5723</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1T0NIPYFchJMQidMZ24nhZovKQKrGp2FpO4rShaVzitMDf4zaoYjWvc69mhpBrhAcEECMp4oAFwCDAiHOfHZEe8-W-io_JJQ05DTiP2cn_welhIPGc9BCBUYqhxAsycO4DACiFiIO8JLfjfKvrzLhhWQ8Tu1pvWt2WttbVcGa_y8xWdv5zRc4KXTkz-It98v40mSUvwfTt-TUZTwONAiMMojznqUxDEEwimphnhV9NpH4nISNWaBoWgKANxCZGCH1D6lRCDhkzoaCsT-47Y-2W5sstbNU6ta1Mau3SKf-Nw43g2VHHunVT1nPTqI5CULvf7WjFlOfVXqB2irtOsW7s58a4Vu2NM1O3ja7U5DEJhZAyRk_edGSmna7KulQrW9t5o9cLp0IuBUPOfgEYknAy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5779981</pqid></control><display><type>book</type><title>Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science</title><source>Springer Books</source><creator>Hong, Huixiao</creator><contributor>Hong, Huixiao</contributor><creatorcontrib>Hong, Huixiao ; Hong, Huixiao</creatorcontrib><description>This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 2542-4491</identifier><identifier>ISBN: 3030164438</identifier><identifier>ISBN: 9783030164430</identifier><identifier>ISBN: 9783030164423</identifier><identifier>ISBN: 303016442X</identifier><identifier>EISSN: 2542-4483</identifier><identifier>EISBN: 3030164438</identifier><identifier>EISBN: 9783030164430</identifier><identifier>DOI: 10.1007/978-3-030-16443-0</identifier><identifier>OCLC: 1103221591</identifier><language>eng</language><publisher>Cham: Springer Nature</publisher><subject>Chemistry ; Chemistry &amp; allied sciences ; Chemistry and Materials Science ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Pharmacology/Toxicology ; Theoretical and Computational Chemistry ; Toxicology-Data processing</subject><creationdate>2019</creationdate><tpages>416</tpages><format>416</format><rights>Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Challenges and Advances in Computational Chemistry and Physics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-16443-0</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-16443-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><contributor>Hong, Huixiao</contributor><creatorcontrib>Hong, Huixiao</creatorcontrib><title>Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science</title><description>This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.</description><subject>Chemistry</subject><subject>Chemistry &amp; allied sciences</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Pharmacology/Toxicology</subject><subject>Theoretical and Computational Chemistry</subject><subject>Toxicology-Data processing</subject><issn>2542-4491</issn><issn>2542-4483</issn><isbn>3030164438</isbn><isbn>9783030164430</isbn><isbn>9783030164423</isbn><isbn>303016442X</isbn><isbn>3030164438</isbn><isbn>9783030164430</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpNkMtOwzAQRc1T0NIPYFchJMQidMZ24nhZovKQKrGp2FpO4rShaVzitMDf4zaoYjWvc69mhpBrhAcEECMp4oAFwCDAiHOfHZEe8-W-io_JJQ05DTiP2cn_welhIPGc9BCBUYqhxAsycO4DACiFiIO8JLfjfKvrzLhhWQ8Tu1pvWt2WttbVcGa_y8xWdv5zRc4KXTkz-It98v40mSUvwfTt-TUZTwONAiMMojznqUxDEEwimphnhV9NpH4nISNWaBoWgKANxCZGCH1D6lRCDhkzoaCsT-47Y-2W5sstbNU6ta1Mau3SKf-Nw43g2VHHunVT1nPTqI5CULvf7WjFlOfVXqB2irtOsW7s58a4Vu2NM1O3ja7U5DEJhZAyRk_edGSmna7KulQrW9t5o9cLp0IuBUPOfgEYknAy</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hong, Huixiao</creator><general>Springer Nature</general><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2019</creationdate><title>Advances in Computational Toxicology</title><author>Hong, Huixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a17161-6dd4b9b5073911e84cf4837b4437963fa25f010ae08e8105fa29ab90d0c3e5723</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Chemistry &amp; allied sciences</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Pharmacology/Toxicology</topic><topic>Theoretical and Computational Chemistry</topic><topic>Toxicology-Data processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Huixiao</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Huixiao</au><au>Hong, Huixiao</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science</btitle><seriestitle>Challenges and Advances in Computational Chemistry and Physics</seriestitle><date>2019</date><risdate>2019</risdate><volume>30</volume><issn>2542-4491</issn><eissn>2542-4483</eissn><isbn>3030164438</isbn><isbn>9783030164430</isbn><isbn>9783030164423</isbn><isbn>303016442X</isbn><eisbn>3030164438</eisbn><eisbn>9783030164430</eisbn><abstract>This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.</abstract><cop>Cham</cop><pub>Springer Nature</pub><doi>10.1007/978-3-030-16443-0</doi><oclcid>1103221591</oclcid><tpages>416</tpages><edition>1st ed. 2019.</edition></addata></record>
fulltext fulltext
identifier ISSN: 2542-4491
ispartof
issn 2542-4491
2542-4483
language eng
recordid cdi_askewsholts_vlebooks_9783030164430
source Springer Books
subjects Chemistry
Chemistry & allied sciences
Chemistry and Materials Science
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Pharmacology/Toxicology
Theoretical and Computational Chemistry
Toxicology-Data processing
title Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Advances%20in%20Computational%20Toxicology:%20Methodologies%20and%20Applications%20in%20Regulatory%20Science&rft.au=Hong,%20Huixiao&rft.date=2019&rft.volume=30&rft.issn=2542-4491&rft.eissn=2542-4483&rft.isbn=3030164438&rft.isbn_list=9783030164430&rft.isbn_list=9783030164423&rft.isbn_list=303016442X&rft_id=info:doi/10.1007/978-3-030-16443-0&rft_dat=%3Cproquest_askew%3EEBC5779981%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030164438&rft.eisbn_list=9783030164430&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5779981&rft_id=info:pmid/&rfr_iscdi=true