Learning Automata Approach for Social Networks
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks'...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 820 |
creator | Rezvanian, Alireza |
description | This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence. |
doi_str_mv | 10.1007/978-3-030-10767-3 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030107673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5921619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a16265-f1c280158e36faa74fff543eff2c7c52130293c07f013a98183d7abaf7057b453</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhcdnROQHuGvcGBeFe-fRaZdI8JEQXWiMu8mlzgBSO9gp8vctVBe6usk53znJuYydI_QRQA8yncYiBgExgk50LPZYr9FEo-wEsc86mCYQZwrEwT_v8NeT2esxO0VIpcRMIz9hvRDeAYDzVCUcOqw_sVSVi3IWDde1_6CaouFqVXnK55HzVfTk8wUV0YOtN75ahjN25KgItvdzu-zlZvw8uosnj7f3o-EkJkx4omKHOU8BVWpF4oi0dM4pKaxzPNe54iiAZyIH7QAFZSmm4k3TlJwGpadSiS67aospLO0mzH1RB_NV2Kn3y2D-rG3YQcuGVdUssZVpKQSz_eWWNsI0vNkFzDZx2SaapZ9rG2qzK85tWVdUmPH1SGUcE8wa8qIlcwpULMqF-fCln1W0mgejpJIoUXwD88l1dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5921619</pqid></control><display><type>book</type><title>Learning Automata Approach for Social Networks</title><source>Springer Books</source><creator>Rezvanian, Alireza</creator><contributor>Moradabadi, Behnaz ; Meybodi, Mohammad Reza ; Ghavipour, Mina ; Daliri Khomami, Mohammad Mehdi</contributor><creatorcontrib>Rezvanian, Alireza ; Moradabadi, Behnaz ; Meybodi, Mohammad Reza ; Ghavipour, Mina ; Daliri Khomami, Mohammad Mehdi</creatorcontrib><description>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 1860-949X</identifier><identifier>ISBN: 9783030107673</identifier><identifier>ISBN: 3030107671</identifier><identifier>ISBN: 3030107663</identifier><identifier>ISBN: 9783030107666</identifier><identifier>EISSN: 1860-9503</identifier><identifier>EISBN: 9783030107673</identifier><identifier>EISBN: 3030107671</identifier><identifier>DOI: 10.1007/978-3-030-10767-3</identifier><identifier>OCLC: 1084419712</identifier><language>eng</language><publisher>Cham: Springer Nature</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Engineering ; Engineering & allied operations ; Online social networks ; Social Media</subject><creationdate>2019</creationdate><tpages>339</tpages><format>339</format><rights>Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Studies in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-10767-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-10767-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,778,782,784,27908,38238,42494</link.rule.ids></links><search><contributor>Moradabadi, Behnaz</contributor><contributor>Meybodi, Mohammad Reza</contributor><contributor>Ghavipour, Mina</contributor><contributor>Daliri Khomami, Mohammad Mehdi</contributor><creatorcontrib>Rezvanian, Alireza</creatorcontrib><title>Learning Automata Approach for Social Networks</title><description>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Engineering & allied operations</subject><subject>Online social networks</subject><subject>Social Media</subject><issn>1860-949X</issn><issn>1860-9503</issn><isbn>9783030107673</isbn><isbn>3030107671</isbn><isbn>3030107663</isbn><isbn>9783030107666</isbn><isbn>9783030107673</isbn><isbn>3030107671</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkEtPwkAUhcdnROQHuGvcGBeFe-fRaZdI8JEQXWiMu8mlzgBSO9gp8vctVBe6usk53znJuYydI_QRQA8yncYiBgExgk50LPZYr9FEo-wEsc86mCYQZwrEwT_v8NeT2esxO0VIpcRMIz9hvRDeAYDzVCUcOqw_sVSVi3IWDde1_6CaouFqVXnK55HzVfTk8wUV0YOtN75ahjN25KgItvdzu-zlZvw8uosnj7f3o-EkJkx4omKHOU8BVWpF4oi0dM4pKaxzPNe54iiAZyIH7QAFZSmm4k3TlJwGpadSiS67aospLO0mzH1RB_NV2Kn3y2D-rG3YQcuGVdUssZVpKQSz_eWWNsI0vNkFzDZx2SaapZ9rG2qzK85tWVdUmPH1SGUcE8wa8qIlcwpULMqF-fCln1W0mgejpJIoUXwD88l1dQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Rezvanian, Alireza</creator><general>Springer Nature</general><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2019</creationdate><title>Learning Automata Approach for Social Networks</title><author>Rezvanian, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a16265-f1c280158e36faa74fff543eff2c7c52130293c07f013a98183d7abaf7057b453</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Engineering & allied operations</topic><topic>Online social networks</topic><topic>Social Media</topic><toplevel>online_resources</toplevel><creatorcontrib>Rezvanian, Alireza</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezvanian, Alireza</au><au>Moradabadi, Behnaz</au><au>Meybodi, Mohammad Reza</au><au>Ghavipour, Mina</au><au>Daliri Khomami, Mohammad Mehdi</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Learning Automata Approach for Social Networks</btitle><seriestitle>Studies in Computational Intelligence</seriestitle><date>2019</date><risdate>2019</risdate><volume>820</volume><issn>1860-949X</issn><eissn>1860-9503</eissn><isbn>9783030107673</isbn><isbn>3030107671</isbn><isbn>3030107663</isbn><isbn>9783030107666</isbn><eisbn>9783030107673</eisbn><eisbn>3030107671</eisbn><abstract>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</abstract><cop>Cham</cop><pub>Springer Nature</pub><doi>10.1007/978-3-030-10767-3</doi><oclcid>1084419712</oclcid><tpages>339</tpages><edition>1st ed. 2019.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-949X |
ispartof | |
issn | 1860-949X 1860-9503 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030107673 |
source | Springer Books |
subjects | Artificial Intelligence Computational Intelligence Engineering Engineering & allied operations Online social networks Social Media |
title | Learning Automata Approach for Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Learning%20Automata%20Approach%20for%20Social%20Networks&rft.au=Rezvanian,%20Alireza&rft.date=2019&rft.volume=820&rft.issn=1860-949X&rft.eissn=1860-9503&rft.isbn=9783030107673&rft.isbn_list=3030107671&rft.isbn_list=3030107663&rft.isbn_list=9783030107666&rft_id=info:doi/10.1007/978-3-030-10767-3&rft_dat=%3Cproquest_askew%3EEBC5921619%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030107673&rft.eisbn_list=3030107671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5921619&rft_id=info:pmid/&rfr_iscdi=true |