Learning Automata Approach for Social Networks

This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rezvanian, Alireza
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 820
creator Rezvanian, Alireza
description This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
doi_str_mv 10.1007/978-3-030-10767-3
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030107673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5921619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a16265-f1c280158e36faa74fff543eff2c7c52130293c07f013a98183d7abaf7057b453</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhcdnROQHuGvcGBeFe-fRaZdI8JEQXWiMu8mlzgBSO9gp8vctVBe6usk53znJuYydI_QRQA8yncYiBgExgk50LPZYr9FEo-wEsc86mCYQZwrEwT_v8NeT2esxO0VIpcRMIz9hvRDeAYDzVCUcOqw_sVSVi3IWDde1_6CaouFqVXnK55HzVfTk8wUV0YOtN75ahjN25KgItvdzu-zlZvw8uosnj7f3o-EkJkx4omKHOU8BVWpF4oi0dM4pKaxzPNe54iiAZyIH7QAFZSmm4k3TlJwGpadSiS67aospLO0mzH1RB_NV2Kn3y2D-rG3YQcuGVdUssZVpKQSz_eWWNsI0vNkFzDZx2SaapZ9rG2qzK85tWVdUmPH1SGUcE8wa8qIlcwpULMqF-fCln1W0mgejpJIoUXwD88l1dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5921619</pqid></control><display><type>book</type><title>Learning Automata Approach for Social Networks</title><source>Springer Books</source><creator>Rezvanian, Alireza</creator><contributor>Moradabadi, Behnaz ; Meybodi, Mohammad Reza ; Ghavipour, Mina ; Daliri Khomami, Mohammad Mehdi</contributor><creatorcontrib>Rezvanian, Alireza ; Moradabadi, Behnaz ; Meybodi, Mohammad Reza ; Ghavipour, Mina ; Daliri Khomami, Mohammad Mehdi</creatorcontrib><description>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 1860-949X</identifier><identifier>ISBN: 9783030107673</identifier><identifier>ISBN: 3030107671</identifier><identifier>ISBN: 3030107663</identifier><identifier>ISBN: 9783030107666</identifier><identifier>EISSN: 1860-9503</identifier><identifier>EISBN: 9783030107673</identifier><identifier>EISBN: 3030107671</identifier><identifier>DOI: 10.1007/978-3-030-10767-3</identifier><identifier>OCLC: 1084419712</identifier><language>eng</language><publisher>Cham: Springer Nature</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Engineering ; Engineering &amp; allied operations ; Online social networks ; Social Media</subject><creationdate>2019</creationdate><tpages>339</tpages><format>339</format><rights>Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Studies in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-10767-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-10767-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,778,782,784,27908,38238,42494</link.rule.ids></links><search><contributor>Moradabadi, Behnaz</contributor><contributor>Meybodi, Mohammad Reza</contributor><contributor>Ghavipour, Mina</contributor><contributor>Daliri Khomami, Mohammad Mehdi</contributor><creatorcontrib>Rezvanian, Alireza</creatorcontrib><title>Learning Automata Approach for Social Networks</title><description>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Engineering &amp; allied operations</subject><subject>Online social networks</subject><subject>Social Media</subject><issn>1860-949X</issn><issn>1860-9503</issn><isbn>9783030107673</isbn><isbn>3030107671</isbn><isbn>3030107663</isbn><isbn>9783030107666</isbn><isbn>9783030107673</isbn><isbn>3030107671</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkEtPwkAUhcdnROQHuGvcGBeFe-fRaZdI8JEQXWiMu8mlzgBSO9gp8vctVBe6usk53znJuYydI_QRQA8yncYiBgExgk50LPZYr9FEo-wEsc86mCYQZwrEwT_v8NeT2esxO0VIpcRMIz9hvRDeAYDzVCUcOqw_sVSVi3IWDde1_6CaouFqVXnK55HzVfTk8wUV0YOtN75ahjN25KgItvdzu-zlZvw8uosnj7f3o-EkJkx4omKHOU8BVWpF4oi0dM4pKaxzPNe54iiAZyIH7QAFZSmm4k3TlJwGpadSiS67aospLO0mzH1RB_NV2Kn3y2D-rG3YQcuGVdUssZVpKQSz_eWWNsI0vNkFzDZx2SaapZ9rG2qzK85tWVdUmPH1SGUcE8wa8qIlcwpULMqF-fCln1W0mgejpJIoUXwD88l1dQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Rezvanian, Alireza</creator><general>Springer Nature</general><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2019</creationdate><title>Learning Automata Approach for Social Networks</title><author>Rezvanian, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a16265-f1c280158e36faa74fff543eff2c7c52130293c07f013a98183d7abaf7057b453</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Engineering &amp; allied operations</topic><topic>Online social networks</topic><topic>Social Media</topic><toplevel>online_resources</toplevel><creatorcontrib>Rezvanian, Alireza</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezvanian, Alireza</au><au>Moradabadi, Behnaz</au><au>Meybodi, Mohammad Reza</au><au>Ghavipour, Mina</au><au>Daliri Khomami, Mohammad Mehdi</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Learning Automata Approach for Social Networks</btitle><seriestitle>Studies in Computational Intelligence</seriestitle><date>2019</date><risdate>2019</risdate><volume>820</volume><issn>1860-949X</issn><eissn>1860-9503</eissn><isbn>9783030107673</isbn><isbn>3030107671</isbn><isbn>3030107663</isbn><isbn>9783030107666</isbn><eisbn>9783030107673</eisbn><eisbn>3030107671</eisbn><abstract>This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis.As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.</abstract><cop>Cham</cop><pub>Springer Nature</pub><doi>10.1007/978-3-030-10767-3</doi><oclcid>1084419712</oclcid><tpages>339</tpages><edition>1st ed. 2019.</edition></addata></record>
fulltext fulltext
identifier ISSN: 1860-949X
ispartof
issn 1860-949X
1860-9503
language eng
recordid cdi_askewsholts_vlebooks_9783030107673
source Springer Books
subjects Artificial Intelligence
Computational Intelligence
Engineering
Engineering & allied operations
Online social networks
Social Media
title Learning Automata Approach for Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Learning%20Automata%20Approach%20for%20Social%20Networks&rft.au=Rezvanian,%20Alireza&rft.date=2019&rft.volume=820&rft.issn=1860-949X&rft.eissn=1860-9503&rft.isbn=9783030107673&rft.isbn_list=3030107671&rft.isbn_list=3030107663&rft.isbn_list=9783030107666&rft_id=info:doi/10.1007/978-3-030-10767-3&rft_dat=%3Cproquest_askew%3EEBC5921619%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030107673&rft.eisbn_list=3030107671&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5921619&rft_id=info:pmid/&rfr_iscdi=true