Deep Reinforcement Learning for Wireless Networks
This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yu, F. Richard He, Ying |
description | This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..
Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool. |
doi_str_mv | 10.1007/978-3-030-10546-4 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030105464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5639444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a20241-496ddacac9dc68e47340a9d323792ce43376f738bd936af26a843bb6c92a3d923</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1T0NIPYJcdYmFqexw7XkIpD6kCCSFYWk4ygdKQFDvQ38dtALEazcy5V3eGkGPOzjhjemx0RoEyYJSzVCoqt8gAYrvp1DY5FNxwmnHBdsgowr-7VO_-7bjYJwPOMpAKtGIHZBTCG2NMcJ5qkx0Sfom4TB5w3lStL_Admy6ZofPNvHlJ4ih5nnusMYTkDrtV6xfhiOxVrg44-qlD8nQ1fZzc0Nn99e3kfEadYEJyKo0qS1e4wpSFylBqkMyZEgRoIwqUEANVGrK8NKBcJZTLJOS5KoxwUBoBQ3LaG7uwwFV4besu2K8a87ZdBPvvYCUjO-7ZsPQxOXrbU5zZ9S_XtAUbebsR2LXipFcsffvxiaGzG-MiPsC72k4vJqkCI6WEb1lHaoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5639444</pqid></control><display><type>book</type><title>Deep Reinforcement Learning for Wireless Networks</title><source>Springer Books</source><creator>Yu, F. Richard ; He, Ying</creator><creatorcontrib>Yu, F. Richard ; He, Ying</creatorcontrib><description>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..
Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 2191-8112</identifier><identifier>ISBN: 9783030105457</identifier><identifier>ISBN: 3030105458</identifier><identifier>EISSN: 2191-8120</identifier><identifier>EISBN: 3030105466</identifier><identifier>EISBN: 9783030105464</identifier><identifier>DOI: 10.1007/978-3-030-10546-4</identifier><identifier>OCLC: 1083463760</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Artificial Intelligence ; Communications Engineering, Networks ; Engineering ; Reinforcement learning ; Wireless and Mobile Communication</subject><creationdate>2019</creationdate><tpages>78</tpages><format>78</format><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Electrical and Computer Engineering</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-10546-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-10546-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><title>Deep Reinforcement Learning for Wireless Networks</title><description>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..
Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</description><subject>Artificial Intelligence</subject><subject>Communications Engineering, Networks</subject><subject>Engineering</subject><subject>Reinforcement learning</subject><subject>Wireless and Mobile Communication</subject><issn>2191-8112</issn><issn>2191-8120</issn><isbn>9783030105457</isbn><isbn>3030105458</isbn><isbn>3030105466</isbn><isbn>9783030105464</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkMtOwzAQRc1T0NIPYJcdYmFqexw7XkIpD6kCCSFYWk4ygdKQFDvQ38dtALEazcy5V3eGkGPOzjhjemx0RoEyYJSzVCoqt8gAYrvp1DY5FNxwmnHBdsgowr-7VO_-7bjYJwPOMpAKtGIHZBTCG2NMcJ5qkx0Sfom4TB5w3lStL_Admy6ZofPNvHlJ4ih5nnusMYTkDrtV6xfhiOxVrg44-qlD8nQ1fZzc0Nn99e3kfEadYEJyKo0qS1e4wpSFylBqkMyZEgRoIwqUEANVGrK8NKBcJZTLJOS5KoxwUBoBQ3LaG7uwwFV4besu2K8a87ZdBPvvYCUjO-7ZsPQxOXrbU5zZ9S_XtAUbebsR2LXipFcsffvxiaGzG-MiPsC72k4vJqkCI6WEb1lHaoQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yu, F. Richard</creator><creator>He, Ying</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope/></search><sort><creationdate>2019</creationdate><title>Deep Reinforcement Learning for Wireless Networks</title><author>Yu, F. Richard ; He, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a20241-496ddacac9dc68e47340a9d323792ce43376f738bd936af26a843bb6c92a3d923</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Communications Engineering, Networks</topic><topic>Engineering</topic><topic>Reinforcement learning</topic><topic>Wireless and Mobile Communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, F. Richard</au><au>He, Ying</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Reinforcement Learning for Wireless Networks</btitle><seriestitle>SpringerBriefs in Electrical and Computer Engineering</seriestitle><date>2019</date><risdate>2019</risdate><issn>2191-8112</issn><eissn>2191-8120</eissn><isbn>9783030105457</isbn><isbn>3030105458</isbn><eisbn>3030105466</eisbn><eisbn>9783030105464</eisbn><abstract>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..
Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-10546-4</doi><oclcid>1083463760</oclcid><tpages>78</tpages><edition>1st ed. 2019.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-8112 |
ispartof | |
issn | 2191-8112 2191-8120 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783030105464 |
source | Springer Books |
subjects | Artificial Intelligence Communications Engineering, Networks Engineering Reinforcement learning Wireless and Mobile Communication |
title | Deep Reinforcement Learning for Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Reinforcement%20Learning%20for%20Wireless%20Networks&rft.au=Yu,%20F.%20Richard&rft.date=2019&rft.issn=2191-8112&rft.eissn=2191-8120&rft.isbn=9783030105457&rft.isbn_list=3030105458&rft_id=info:doi/10.1007/978-3-030-10546-4&rft_dat=%3Cproquest_askew%3EEBC5639444%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030105466&rft.eisbn_list=9783030105464&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5639444&rft_id=info:pmid/&rfr_iscdi=true |