Deep Reinforcement Learning for Wireless Networks

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu, F. Richard, He, Ying
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yu, F. Richard
He, Ying
description This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.
doi_str_mv 10.1007/978-3-030-10546-4
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783030105464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5639444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a20241-496ddacac9dc68e47340a9d323792ce43376f738bd936af26a843bb6c92a3d923</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1T0NIPYJcdYmFqexw7XkIpD6kCCSFYWk4ygdKQFDvQ38dtALEazcy5V3eGkGPOzjhjemx0RoEyYJSzVCoqt8gAYrvp1DY5FNxwmnHBdsgowr-7VO_-7bjYJwPOMpAKtGIHZBTCG2NMcJ5qkx0Sfom4TB5w3lStL_Admy6ZofPNvHlJ4ih5nnusMYTkDrtV6xfhiOxVrg44-qlD8nQ1fZzc0Nn99e3kfEadYEJyKo0qS1e4wpSFylBqkMyZEgRoIwqUEANVGrK8NKBcJZTLJOS5KoxwUBoBQ3LaG7uwwFV4besu2K8a87ZdBPvvYCUjO-7ZsPQxOXrbU5zZ9S_XtAUbebsR2LXipFcsffvxiaGzG-MiPsC72k4vJqkCI6WEb1lHaoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5639444</pqid></control><display><type>book</type><title>Deep Reinforcement Learning for Wireless Networks</title><source>Springer Books</source><creator>Yu, F. Richard ; He, Ying</creator><creatorcontrib>Yu, F. Richard ; He, Ying</creatorcontrib><description>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</description><edition>1st ed. 2019.</edition><identifier>ISSN: 2191-8112</identifier><identifier>ISBN: 9783030105457</identifier><identifier>ISBN: 3030105458</identifier><identifier>EISSN: 2191-8120</identifier><identifier>EISBN: 3030105466</identifier><identifier>EISBN: 9783030105464</identifier><identifier>DOI: 10.1007/978-3-030-10546-4</identifier><identifier>OCLC: 1083463760</identifier><language>eng</language><publisher>Cham: Springer International Publishing AG</publisher><subject>Artificial Intelligence ; Communications Engineering, Networks ; Engineering ; Reinforcement learning ; Wireless and Mobile Communication</subject><creationdate>2019</creationdate><tpages>78</tpages><format>78</format><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Electrical and Computer Engineering</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-10546-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-10546-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,42487</link.rule.ids></links><search><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><title>Deep Reinforcement Learning for Wireless Networks</title><description>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</description><subject>Artificial Intelligence</subject><subject>Communications Engineering, Networks</subject><subject>Engineering</subject><subject>Reinforcement learning</subject><subject>Wireless and Mobile Communication</subject><issn>2191-8112</issn><issn>2191-8120</issn><isbn>9783030105457</isbn><isbn>3030105458</isbn><isbn>3030105466</isbn><isbn>9783030105464</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpNkMtOwzAQRc1T0NIPYJcdYmFqexw7XkIpD6kCCSFYWk4ygdKQFDvQ38dtALEazcy5V3eGkGPOzjhjemx0RoEyYJSzVCoqt8gAYrvp1DY5FNxwmnHBdsgowr-7VO_-7bjYJwPOMpAKtGIHZBTCG2NMcJ5qkx0Sfom4TB5w3lStL_Admy6ZofPNvHlJ4ih5nnusMYTkDrtV6xfhiOxVrg44-qlD8nQ1fZzc0Nn99e3kfEadYEJyKo0qS1e4wpSFylBqkMyZEgRoIwqUEANVGrK8NKBcJZTLJOS5KoxwUBoBQ3LaG7uwwFV4besu2K8a87ZdBPvvYCUjO-7ZsPQxOXrbU5zZ9S_XtAUbebsR2LXipFcsffvxiaGzG-MiPsC72k4vJqkCI6WEb1lHaoQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yu, F. Richard</creator><creator>He, Ying</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope/></search><sort><creationdate>2019</creationdate><title>Deep Reinforcement Learning for Wireless Networks</title><author>Yu, F. Richard ; He, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a20241-496ddacac9dc68e47340a9d323792ce43376f738bd936af26a843bb6c92a3d923</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Communications Engineering, Networks</topic><topic>Engineering</topic><topic>Reinforcement learning</topic><topic>Wireless and Mobile Communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, F. Richard</au><au>He, Ying</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Reinforcement Learning for Wireless Networks</btitle><seriestitle>SpringerBriefs in Electrical and Computer Engineering</seriestitle><date>2019</date><risdate>2019</risdate><issn>2191-8112</issn><eissn>2191-8120</eissn><isbn>9783030105457</isbn><isbn>3030105458</isbn><eisbn>3030105466</eisbn><eisbn>9783030105464</eisbn><abstract>This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.</abstract><cop>Cham</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-10546-4</doi><oclcid>1083463760</oclcid><tpages>78</tpages><edition>1st ed. 2019.</edition></addata></record>
fulltext fulltext
identifier ISSN: 2191-8112
ispartof
issn 2191-8112
2191-8120
language eng
recordid cdi_askewsholts_vlebooks_9783030105464
source Springer Books
subjects Artificial Intelligence
Communications Engineering, Networks
Engineering
Reinforcement learning
Wireless and Mobile Communication
title Deep Reinforcement Learning for Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Reinforcement%20Learning%20for%20Wireless%20Networks&rft.au=Yu,%20F.%20Richard&rft.date=2019&rft.issn=2191-8112&rft.eissn=2191-8120&rft.isbn=9783030105457&rft.isbn_list=3030105458&rft_id=info:doi/10.1007/978-3-030-10546-4&rft_dat=%3Cproquest_askew%3EEBC5639444%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030105466&rft.eisbn_list=9783030105464&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5639444&rft_id=info:pmid/&rfr_iscdi=true