Probabilistic normed spaces

This book provides a comprehensive foundation in Probabilistic Normed (PN) Spaces for anyone conducting research in this field of mathematics and statistics. It is the first to fully discuss the developments and the open problems of this highly relevant topic, introduced by A N Serstnev in the early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guillen, Bernardo Lafuerza, Harikrishnan, Panackal
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Guillen, Bernardo Lafuerza
Harikrishnan, Panackal
description This book provides a comprehensive foundation in Probabilistic Normed (PN) Spaces for anyone conducting research in this field of mathematics and statistics. It is the first to fully discuss the developments and the open problems of this highly relevant topic, introduced by A N Serstnev in the early 1960s as a response to problems of best approximations in statistics. The theory was revived by Claudi Alsina, Bert Schweizer and Abe Sklar in 1993, who provided a new, wider definition of a PN space which quickly became the standard adopted by all researchers. This book is the first wholly up-to-date and thorough investigation of the properties, uses and applications of PN spaces, based on the standard definition. Topics covered include: What are PN spaces? The topology of PN spaces Probabilistic norms and convergence Products and quotients of PN spaces D-boundedness and D-compactness Normability Invariant and semi-invariant PN spaces Linear operators Stability of some functional equations in PN spaces Menger's 2-probabilistic normed spaces The theory of PN spaces is relevant as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. This introduction will therefore have broad relevance across mathematical and statistical research, especially those working in probabilistic functional analysis and probabilistic geometry.
doi_str_mv 10.1142/9781783264698
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781783264698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC1779675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2758x-72bf5a28a65993d957fd0357cd05854e5de49b33c23a003c7a3416d9cba65b4b3</originalsourceid><addsrcrecordid>eNpVkElPwzAQhY0QiFJy5MSlN-AQ8BrbRxqVRapEJRAcI9txWtM0CXbK8u-xCEJwmjeab0bvDQDHCF4gRPGl5AJxQXBGMyl2wOFvg3ZB8mco0D4YCQkZgQizA5CE8AJh1CIyeAROFr7VSrvahd6ZSdP6jS0noVPGhiOwV6k62OSnjsHT9ewxv03n9zd3-dU8VZgz8ZFyrCumsFAZk5KUkvGqhIRxU0ImGLWstFRqQgwmCkJiuCIUZaU0Om5oqskYnA-HVVjb97Bq6z4Ub7XVbbsOxb-okT0d2M63r1sb-uIbM7bpvaqL2TRHnMuMs0ieDaRbdlsdA65csyw67zbKfxbPD4t8Gj8RLSPyBW7cXaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC1779675</pqid></control><display><type>book</type><title>Probabilistic normed spaces</title><source>World Scientific eBooks</source><creator>Guillen, Bernardo Lafuerza ; Harikrishnan, Panackal</creator><creatorcontrib>Guillen, Bernardo Lafuerza ; Harikrishnan, Panackal</creatorcontrib><description>This book provides a comprehensive foundation in Probabilistic Normed (PN) Spaces for anyone conducting research in this field of mathematics and statistics. It is the first to fully discuss the developments and the open problems of this highly relevant topic, introduced by A N Serstnev in the early 1960s as a response to problems of best approximations in statistics. The theory was revived by Claudi Alsina, Bert Schweizer and Abe Sklar in 1993, who provided a new, wider definition of a PN space which quickly became the standard adopted by all researchers. This book is the first wholly up-to-date and thorough investigation of the properties, uses and applications of PN spaces, based on the standard definition. Topics covered include: What are PN spaces? The topology of PN spaces Probabilistic norms and convergence Products and quotients of PN spaces D-boundedness and D-compactness Normability Invariant and semi-invariant PN spaces Linear operators Stability of some functional equations in PN spaces Menger's 2-probabilistic normed spaces The theory of PN spaces is relevant as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. This introduction will therefore have broad relevance across mathematical and statistical research, especially those working in probabilistic functional analysis and probabilistic geometry.</description><edition>1</edition><identifier>ISBN: 9781783264681</identifier><identifier>ISBN: 1783264683</identifier><identifier>EISBN: 1783264691</identifier><identifier>EISBN: 9781783264698</identifier><identifier>DOI: 10.1142/9781783264698</identifier><identifier>OCLC: 890530125</identifier><identifier>LCCallNum: QA322.2</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Co. Pte. Ltd</publisher><subject>Normed linear spaces</subject><creationdate>2014</creationdate><tpages>233</tpages><format>233</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://portal.igpublish.com/iglibrary/amazonbuffer/WSPCB0005991_null_0_320.png</thumbnail><link.rule.ids>306,776,780,782,27902</link.rule.ids></links><search><creatorcontrib>Guillen, Bernardo Lafuerza</creatorcontrib><creatorcontrib>Harikrishnan, Panackal</creatorcontrib><title>Probabilistic normed spaces</title><description>This book provides a comprehensive foundation in Probabilistic Normed (PN) Spaces for anyone conducting research in this field of mathematics and statistics. It is the first to fully discuss the developments and the open problems of this highly relevant topic, introduced by A N Serstnev in the early 1960s as a response to problems of best approximations in statistics. The theory was revived by Claudi Alsina, Bert Schweizer and Abe Sklar in 1993, who provided a new, wider definition of a PN space which quickly became the standard adopted by all researchers. This book is the first wholly up-to-date and thorough investigation of the properties, uses and applications of PN spaces, based on the standard definition. Topics covered include: What are PN spaces? The topology of PN spaces Probabilistic norms and convergence Products and quotients of PN spaces D-boundedness and D-compactness Normability Invariant and semi-invariant PN spaces Linear operators Stability of some functional equations in PN spaces Menger's 2-probabilistic normed spaces The theory of PN spaces is relevant as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. This introduction will therefore have broad relevance across mathematical and statistical research, especially those working in probabilistic functional analysis and probabilistic geometry.</description><subject>Normed linear spaces</subject><isbn>9781783264681</isbn><isbn>1783264683</isbn><isbn>1783264691</isbn><isbn>9781783264698</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2014</creationdate><recordtype>book</recordtype><recordid>eNpVkElPwzAQhY0QiFJy5MSlN-AQ8BrbRxqVRapEJRAcI9txWtM0CXbK8u-xCEJwmjeab0bvDQDHCF4gRPGl5AJxQXBGMyl2wOFvg3ZB8mco0D4YCQkZgQizA5CE8AJh1CIyeAROFr7VSrvahd6ZSdP6jS0noVPGhiOwV6k62OSnjsHT9ewxv03n9zd3-dU8VZgz8ZFyrCumsFAZk5KUkvGqhIRxU0ImGLWstFRqQgwmCkJiuCIUZaU0Om5oqskYnA-HVVjb97Bq6z4Ub7XVbbsOxb-okT0d2M63r1sb-uIbM7bpvaqL2TRHnMuMs0ieDaRbdlsdA65csyw67zbKfxbPD4t8Gj8RLSPyBW7cXaM</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Guillen, Bernardo Lafuerza</creator><creator>Harikrishnan, Panackal</creator><general>World Scientific Publishing Co. Pte. Ltd</general><general>World Scientific Publishing Company</general><general>ICP</general><scope>WMAQA</scope></search><sort><creationdate>2014</creationdate><title>Probabilistic normed spaces</title><author>Guillen, Bernardo Lafuerza ; Harikrishnan, Panackal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2758x-72bf5a28a65993d957fd0357cd05854e5de49b33c23a003c7a3416d9cba65b4b3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Normed linear spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Guillen, Bernardo Lafuerza</creatorcontrib><creatorcontrib>Harikrishnan, Panackal</creatorcontrib><collection>World Scientific</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillen, Bernardo Lafuerza</au><au>Harikrishnan, Panackal</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Probabilistic normed spaces</btitle><date>2014</date><risdate>2014</risdate><isbn>9781783264681</isbn><isbn>1783264683</isbn><eisbn>1783264691</eisbn><eisbn>9781783264698</eisbn><abstract>This book provides a comprehensive foundation in Probabilistic Normed (PN) Spaces for anyone conducting research in this field of mathematics and statistics. It is the first to fully discuss the developments and the open problems of this highly relevant topic, introduced by A N Serstnev in the early 1960s as a response to problems of best approximations in statistics. The theory was revived by Claudi Alsina, Bert Schweizer and Abe Sklar in 1993, who provided a new, wider definition of a PN space which quickly became the standard adopted by all researchers. This book is the first wholly up-to-date and thorough investigation of the properties, uses and applications of PN spaces, based on the standard definition. Topics covered include: What are PN spaces? The topology of PN spaces Probabilistic norms and convergence Products and quotients of PN spaces D-boundedness and D-compactness Normability Invariant and semi-invariant PN spaces Linear operators Stability of some functional equations in PN spaces Menger's 2-probabilistic normed spaces The theory of PN spaces is relevant as a generalization of deterministic results of linear normed spaces and also in the study of random operator equations. This introduction will therefore have broad relevance across mathematical and statistical research, especially those working in probabilistic functional analysis and probabilistic geometry.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Co. Pte. Ltd</pub><doi>10.1142/9781783264698</doi><oclcid>890530125</oclcid><tpages>233</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9781783264681
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9781783264698
source World Scientific eBooks
subjects Normed linear spaces
title Probabilistic normed spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Probabilistic%20normed%20spaces&rft.au=Guillen,%20Bernardo%20Lafuerza&rft.date=2014&rft.isbn=9781783264681&rft.isbn_list=1783264683&rft_id=info:doi/10.1142/9781783264698&rft_dat=%3Cproquest_askew%3EEBC1779675%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=1783264691&rft.eisbn_list=9781783264698&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1779675&rft_id=info:pmid/&rfr_iscdi=true