Dynamic Data Analysis: Modeling Data with Differential Equations

This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ramsay, James
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ramsay, James
description This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
doi_str_mv 10.1007/978-1-4939-7190-9
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781493971909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4890256</sourcerecordid><originalsourceid>FETCH-LOGICAL-a25578-2ed4556839b8cca4a1932ffcf0649bae7099cbecd0f89e2674ec31f0ad0aedeb3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxc2niEpHBjbEghhM7xwnzo2lLR9SJRaE2CzHddrQNClxAPW_JyEsMJ3u3e-d3h1j5wg3CKBGpBKOXFJIXCEBpz02bDXslE6gfRYIJMWjOHk9-Dc7ZAGgEly1_TELiATGSsbqhA29fwMATKQCGQfsbLorzSa3F1PTmItxaYqdz_0pO8pM4d3wtw7Yy93sefLA50_3j5PxnBsRRW1A4RYyagOElCbWGmmQQpFlNoNYUmqcAiKbOruALCEn2gzOhpiBWYBxC5eGA3bdLzZ-7b78qioarz8Ll1bV2us_N7XsqGf9ts7Lpat1TyHo7mMdrVF3vO4MunNc9Y5tXb1_ON_on8XWlU1tCj27nciEQERxS172pDXeFHmZ601VVsvabFdeRzJGhRh-A9B5bc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4890256</pqid></control><display><type>book</type><title>Dynamic Data Analysis: Modeling Data with Differential Equations</title><source>Springer Books</source><creator>Ramsay, James</creator><contributor>Hooker, Giles</contributor><creatorcontrib>Ramsay, James ; Hooker, Giles</creatorcontrib><description>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</description><edition>1</edition><identifier>ISSN: 0172-7397</identifier><identifier>ISBN: 9781493971909</identifier><identifier>ISBN: 1493971905</identifier><identifier>ISBN: 9781493971886</identifier><identifier>ISBN: 1493971883</identifier><identifier>EISSN: 2197-568X</identifier><identifier>EISBN: 9781493971909</identifier><identifier>EISBN: 1493971905</identifier><identifier>DOI: 10.1007/978-1-4939-7190-9</identifier><identifier>OCLC: 992167467</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Applications of Mathematics ; Big Data/Analytics ; Differential equations ; Functional Analysis ; Mathematics and Statistics ; Multivariate analysis ; Probabilities &amp; applied mathematics ; Statistical Theory and Methods ; Statistics ; Stochastic differential equations</subject><creationdate>2017</creationdate><tpages>242</tpages><format>242</format><rights>Springer Science+Business Media LLC 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Series in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-1-4939-7190-9</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4939-7190-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><contributor>Hooker, Giles</contributor><creatorcontrib>Ramsay, James</creatorcontrib><title>Dynamic Data Analysis: Modeling Data with Differential Equations</title><description>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</description><subject>Applications of Mathematics</subject><subject>Big Data/Analytics</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Probabilities &amp; applied mathematics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Stochastic differential equations</subject><issn>0172-7397</issn><issn>2197-568X</issn><isbn>9781493971909</isbn><isbn>1493971905</isbn><isbn>9781493971886</isbn><isbn>1493971883</isbn><isbn>9781493971909</isbn><isbn>1493971905</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2017</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkL1PwzAQxc2niEpHBjbEghhM7xwnzo2lLR9SJRaE2CzHddrQNClxAPW_JyEsMJ3u3e-d3h1j5wg3CKBGpBKOXFJIXCEBpz02bDXslE6gfRYIJMWjOHk9-Dc7ZAGgEly1_TELiATGSsbqhA29fwMATKQCGQfsbLorzSa3F1PTmItxaYqdz_0pO8pM4d3wtw7Yy93sefLA50_3j5PxnBsRRW1A4RYyagOElCbWGmmQQpFlNoNYUmqcAiKbOruALCEn2gzOhpiBWYBxC5eGA3bdLzZ-7b78qioarz8Ll1bV2us_N7XsqGf9ts7Lpat1TyHo7mMdrVF3vO4MunNc9Y5tXb1_ON_on8XWlU1tCj27nciEQERxS172pDXeFHmZ601VVsvabFdeRzJGhRh-A9B5bc4</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ramsay, James</creator><general>Springer Nature</general><general>Springer New York</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2017</creationdate><title>Dynamic Data Analysis</title><author>Ramsay, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a25578-2ed4556839b8cca4a1932ffcf0649bae7099cbecd0f89e2674ec31f0ad0aedeb3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Big Data/Analytics</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Probabilities &amp; applied mathematics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Stochastic differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramsay, James</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramsay, James</au><au>Hooker, Giles</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Dynamic Data Analysis: Modeling Data with Differential Equations</btitle><seriestitle>Springer Series in Statistics</seriestitle><date>2017</date><risdate>2017</risdate><issn>0172-7397</issn><eissn>2197-568X</eissn><isbn>9781493971909</isbn><isbn>1493971905</isbn><isbn>9781493971886</isbn><isbn>1493971883</isbn><eisbn>9781493971909</eisbn><eisbn>1493971905</eisbn><abstract>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/978-1-4939-7190-9</doi><oclcid>992167467</oclcid><tpages>242</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0172-7397
ispartof
issn 0172-7397
2197-568X
language eng
recordid cdi_askewsholts_vlebooks_9781493971909
source Springer Books
subjects Applications of Mathematics
Big Data/Analytics
Differential equations
Functional Analysis
Mathematics and Statistics
Multivariate analysis
Probabilities & applied mathematics
Statistical Theory and Methods
Statistics
Stochastic differential equations
title Dynamic Data Analysis: Modeling Data with Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Dynamic%20Data%20Analysis:%20Modeling%20Data%20with%20Differential%20Equations&rft.au=Ramsay,%20James&rft.date=2017&rft.issn=0172-7397&rft.eissn=2197-568X&rft.isbn=9781493971909&rft.isbn_list=1493971905&rft.isbn_list=9781493971886&rft.isbn_list=1493971883&rft_id=info:doi/10.1007/978-1-4939-7190-9&rft_dat=%3Cproquest_askew%3EEBC4890256%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781493971909&rft.eisbn_list=1493971905&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4890256&rft_id=info:pmid/&rfr_iscdi=true