Dynamic Data Analysis: Modeling Data with Differential Equations
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ramsay, James |
description | This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap. |
doi_str_mv | 10.1007/978-1-4939-7190-9 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781493971909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4890256</sourcerecordid><originalsourceid>FETCH-LOGICAL-a25578-2ed4556839b8cca4a1932ffcf0649bae7099cbecd0f89e2674ec31f0ad0aedeb3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxc2niEpHBjbEghhM7xwnzo2lLR9SJRaE2CzHddrQNClxAPW_JyEsMJ3u3e-d3h1j5wg3CKBGpBKOXFJIXCEBpz02bDXslE6gfRYIJMWjOHk9-Dc7ZAGgEly1_TELiATGSsbqhA29fwMATKQCGQfsbLorzSa3F1PTmItxaYqdz_0pO8pM4d3wtw7Yy93sefLA50_3j5PxnBsRRW1A4RYyagOElCbWGmmQQpFlNoNYUmqcAiKbOruALCEn2gzOhpiBWYBxC5eGA3bdLzZ-7b78qioarz8Ll1bV2us_N7XsqGf9ts7Lpat1TyHo7mMdrVF3vO4MunNc9Y5tXb1_ON_on8XWlU1tCj27nciEQERxS172pDXeFHmZ601VVsvabFdeRzJGhRh-A9B5bc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4890256</pqid></control><display><type>book</type><title>Dynamic Data Analysis: Modeling Data with Differential Equations</title><source>Springer Books</source><creator>Ramsay, James</creator><contributor>Hooker, Giles</contributor><creatorcontrib>Ramsay, James ; Hooker, Giles</creatorcontrib><description>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</description><edition>1</edition><identifier>ISSN: 0172-7397</identifier><identifier>ISBN: 9781493971909</identifier><identifier>ISBN: 1493971905</identifier><identifier>ISBN: 9781493971886</identifier><identifier>ISBN: 1493971883</identifier><identifier>EISSN: 2197-568X</identifier><identifier>EISBN: 9781493971909</identifier><identifier>EISBN: 1493971905</identifier><identifier>DOI: 10.1007/978-1-4939-7190-9</identifier><identifier>OCLC: 992167467</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Applications of Mathematics ; Big Data/Analytics ; Differential equations ; Functional Analysis ; Mathematics and Statistics ; Multivariate analysis ; Probabilities & applied mathematics ; Statistical Theory and Methods ; Statistics ; Stochastic differential equations</subject><creationdate>2017</creationdate><tpages>242</tpages><format>242</format><rights>Springer Science+Business Media LLC 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Series in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-1-4939-7190-9</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4939-7190-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><contributor>Hooker, Giles</contributor><creatorcontrib>Ramsay, James</creatorcontrib><title>Dynamic Data Analysis: Modeling Data with Differential Equations</title><description>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</description><subject>Applications of Mathematics</subject><subject>Big Data/Analytics</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Probabilities & applied mathematics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Stochastic differential equations</subject><issn>0172-7397</issn><issn>2197-568X</issn><isbn>9781493971909</isbn><isbn>1493971905</isbn><isbn>9781493971886</isbn><isbn>1493971883</isbn><isbn>9781493971909</isbn><isbn>1493971905</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2017</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkL1PwzAQxc2niEpHBjbEghhM7xwnzo2lLR9SJRaE2CzHddrQNClxAPW_JyEsMJ3u3e-d3h1j5wg3CKBGpBKOXFJIXCEBpz02bDXslE6gfRYIJMWjOHk9-Dc7ZAGgEly1_TELiATGSsbqhA29fwMATKQCGQfsbLorzSa3F1PTmItxaYqdz_0pO8pM4d3wtw7Yy93sefLA50_3j5PxnBsRRW1A4RYyagOElCbWGmmQQpFlNoNYUmqcAiKbOruALCEn2gzOhpiBWYBxC5eGA3bdLzZ-7b78qioarz8Ll1bV2us_N7XsqGf9ts7Lpat1TyHo7mMdrVF3vO4MunNc9Y5tXb1_ON_on8XWlU1tCj27nciEQERxS172pDXeFHmZ601VVsvabFdeRzJGhRh-A9B5bc4</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ramsay, James</creator><general>Springer Nature</general><general>Springer New York</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2017</creationdate><title>Dynamic Data Analysis</title><author>Ramsay, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a25578-2ed4556839b8cca4a1932ffcf0649bae7099cbecd0f89e2674ec31f0ad0aedeb3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Big Data/Analytics</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Probabilities & applied mathematics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Stochastic differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramsay, James</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramsay, James</au><au>Hooker, Giles</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Dynamic Data Analysis: Modeling Data with Differential Equations</btitle><seriestitle>Springer Series in Statistics</seriestitle><date>2017</date><risdate>2017</risdate><issn>0172-7397</issn><eissn>2197-568X</eissn><isbn>9781493971909</isbn><isbn>1493971905</isbn><isbn>9781493971886</isbn><isbn>1493971883</isbn><eisbn>9781493971909</eisbn><eisbn>1493971905</eisbn><abstract>This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/978-1-4939-7190-9</doi><oclcid>992167467</oclcid><tpages>242</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-7397 |
ispartof | |
issn | 0172-7397 2197-568X |
language | eng |
recordid | cdi_askewsholts_vlebooks_9781493971909 |
source | Springer Books |
subjects | Applications of Mathematics Big Data/Analytics Differential equations Functional Analysis Mathematics and Statistics Multivariate analysis Probabilities & applied mathematics Statistical Theory and Methods Statistics Stochastic differential equations |
title | Dynamic Data Analysis: Modeling Data with Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Dynamic%20Data%20Analysis:%20Modeling%20Data%20with%20Differential%20Equations&rft.au=Ramsay,%20James&rft.date=2017&rft.issn=0172-7397&rft.eissn=2197-568X&rft.isbn=9781493971909&rft.isbn_list=1493971905&rft.isbn_list=9781493971886&rft.isbn_list=1493971883&rft_id=info:doi/10.1007/978-1-4939-7190-9&rft_dat=%3Cproquest_askew%3EEBC4890256%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781493971909&rft.eisbn_list=1493971905&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4890256&rft_id=info:pmid/&rfr_iscdi=true |