Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

Graphics in this book are printed in black and white.Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Geron, Aurelien
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Geron, Aurelien
description Graphics in this book are printed in black and white.Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks-scikit-learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.Explore the machine learning landscape, particularly neural netsUse scikit-learn to track an example machine-learning project end-to-endExplore several training models, including support vector machines, decision trees, random forests, and ensemble methodsUse the TensorFlow library to build and train neural netsDive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learningLearn techniques for training and scaling deep neural netsApply practical code examples without acquiring excessive machine learning theory or algorithm details
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781491962244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4822582</sourcerecordid><originalsourceid>FETCH-LOGICAL-a46199-b3b89ad4008d3115793eaccb7788071ff6335e912f6ab4e9c497b503f1385b533</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCOiuKz9D7mJh0K-muT1pmXXFSp7cPFakjS1tSXVptq_b9n1oKdhhodh5gwloDQVQEEyJvX5Pw9wiVagpCBSSXKFkhjfCSEUREY4WaG7nQlVTPcBPxvXtMHjwpsxtOENz-3U4BfXdu2UHkO8oPjgQxzGbT_M1-iiNn30ya-u0et2c8h3abF_fMrvi9QISQFSy60GUwlCdMUpzRRwb5yzSmlNFK1ryXnmgbJaGis8OAHKLutqynVmM87X6PZUbGLn59gM_RTL797bYehi-eesEAt7c2I_xuHzy8epPGLOh2k0fbl5yIVmLNOM_wB8D1ZC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC4822582</pqid></control><display><type>book</type><title>Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Geron, Aurelien</creator><creatorcontrib>Geron, Aurelien</creatorcontrib><description>Graphics in this book are printed in black and white.Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks-scikit-learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.Explore the machine learning landscape, particularly neural netsUse scikit-learn to track an example machine-learning project end-to-endExplore several training models, including support vector machines, decision trees, random forests, and ensemble methodsUse the TensorFlow library to build and train neural netsDive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learningLearn techniques for training and scaling deep neural netsApply practical code examples without acquiring excessive machine learning theory or algorithm details</description><edition>First edition</edition><identifier>ISBN: 9781491962299</identifier><identifier>ISBN: 1491962291</identifier><identifier>EISBN: 9781491962268</identifier><identifier>EISBN: 1491962267</identifier><identifier>EISBN: 1491962240</identifier><identifier>EISBN: 9781491962244</identifier><identifier>OCLC: 976406760</identifier><language>eng</language><publisher>Sebastopol: O'Reilly Media, Incorporated</publisher><subject>Machine learning ; Python (Computer program language)</subject><creationdate>2017</creationdate><tpages>574</tpages><format>574</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782</link.rule.ids></links><search><creatorcontrib>Geron, Aurelien</creatorcontrib><title>Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems</title><description>Graphics in this book are printed in black and white.Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks-scikit-learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.Explore the machine learning landscape, particularly neural netsUse scikit-learn to track an example machine-learning project end-to-endExplore several training models, including support vector machines, decision trees, random forests, and ensemble methodsUse the TensorFlow library to build and train neural netsDive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learningLearn techniques for training and scaling deep neural netsApply practical code examples without acquiring excessive machine learning theory or algorithm details</description><subject>Machine learning</subject><subject>Python (Computer program language)</subject><isbn>9781491962299</isbn><isbn>1491962291</isbn><isbn>9781491962268</isbn><isbn>1491962267</isbn><isbn>1491962240</isbn><isbn>9781491962244</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2017</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVj01LxDAYhCOiuKz9D7mJh0K-muT1pmXXFSp7cPFakjS1tSXVptq_b9n1oKdhhodh5gwloDQVQEEyJvX5Pw9wiVagpCBSSXKFkhjfCSEUREY4WaG7nQlVTPcBPxvXtMHjwpsxtOENz-3U4BfXdu2UHkO8oPjgQxzGbT_M1-iiNn30ya-u0et2c8h3abF_fMrvi9QISQFSy60GUwlCdMUpzRRwb5yzSmlNFK1ryXnmgbJaGis8OAHKLutqynVmM87X6PZUbGLn59gM_RTL797bYehi-eesEAt7c2I_xuHzy8epPGLOh2k0fbl5yIVmLNOM_wB8D1ZC</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Geron, Aurelien</creator><general>O'Reilly Media, Incorporated</general><general>O'Reilly</general><scope/></search><sort><creationdate>2017</creationdate><title>Hands-On Machine Learning with Scikit-Learn and TensorFlow</title><author>Geron, Aurelien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a46199-b3b89ad4008d3115793eaccb7788071ff6335e912f6ab4e9c497b503f1385b533</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Machine learning</topic><topic>Python (Computer program language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Geron, Aurelien</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geron, Aurelien</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems</btitle><date>2017</date><risdate>2017</risdate><isbn>9781491962299</isbn><isbn>1491962291</isbn><eisbn>9781491962268</eisbn><eisbn>1491962267</eisbn><eisbn>1491962240</eisbn><eisbn>9781491962244</eisbn><abstract>Graphics in this book are printed in black and white.Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks-scikit-learn and TensorFlow-author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.Explore the machine learning landscape, particularly neural netsUse scikit-learn to track an example machine-learning project end-to-endExplore several training models, including support vector machines, decision trees, random forests, and ensemble methodsUse the TensorFlow library to build and train neural netsDive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learningLearn techniques for training and scaling deep neural netsApply practical code examples without acquiring excessive machine learning theory or algorithm details</abstract><cop>Sebastopol</cop><pub>O'Reilly Media, Incorporated</pub><oclcid>976406760</oclcid><tpages>574</tpages><edition>First edition</edition></addata></record>
fulltext fulltext
identifier ISBN: 9781491962299
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9781491962244
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Machine learning
Python (Computer program language)
title Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Hands-On%20Machine%20Learning%20with%20Scikit-Learn%20and%20TensorFlow:%20Concepts,%20Tools,%20and%20Techniques%20to%20Build%20Intelligent%20Systems&rft.au=Geron,%20Aurelien&rft.date=2017&rft.isbn=9781491962299&rft.isbn_list=1491962291&rft_id=info:doi/&rft_dat=%3Cproquest_askew%3EEBC4822582%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781491962268&rft.eisbn_list=1491962267&rft.eisbn_list=1491962240&rft.eisbn_list=9781491962244&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4822582&rft_id=info:pmid/&rfr_iscdi=true