Plane algebraic curves

The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fischer, Gerd
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 15
creator Fischer, Gerd
description The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as analysis and topology, that is typical of complex algebraic geometry, but without the need for advanced techniques from commutative algebra or the abstract machinery of sheaves and schemes. In the first half of this book, Fischer introduces some elementary geometrical aspects, such as tangents, singularities, inflection points, and so on.The main technical tool is the concept of intersection multiplicity and Bezout's theorem. This part culminates in the beautiful Plucker formulas, which relate the various invariants introduced earlier. The second part of the book is essentially a detailed outline of modern methods of local analytic geometry in the context of complex curves. This provides the stronger tools needed for a good understanding of duality and an efficient means of computing intersection multiplicities introduced earlier. Thus, we meet rings of power series, germs of curves, and formal parametrizations. Finally, through the patching of the local information, a Riemann surface is associated to an algebraic curve, thus linking the algebra and the analysis.Concrete examples and figures are given throughout the text, and when possible, procedures are given for computing by using polynomials and power series. Several appendices gather supporting material from algebra and topology and expand on interesting geometric topics. This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help the student establish the appropriate geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher dimensional varieties. This is the English translation of a German work originally published by Vieweg Verlag (Wiesbaden, Germany).
format Book
fullrecord <record><control><sourceid>askewsholts</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781470421311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9781470421311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a552-54720312753100c8f43dc9928c58ca5e3f049c258f018a7069a1aad3737e6903</originalsourceid><addsrcrecordid>eNpVj0trAjEURlNEsIyzde3WxcB9JCZZitgHDCjofriTydhq6ICx9u-3tN0IHxzO5sD3oEpvHWoLmpARR78OjvBnRDBRZc4nACDjiTQ9qtkuyUecSzrG9iLvYR4-L7eYp2rcS8qx_Geh9k-bw_qlqrfPr-tVXYkxVBltCRjJGkaA4HrNXfCeXDAuiIncg_aBjOsBnVhYekGRji3buPTAhVr8VSWf41d-G9I1N7cU22E45-buCX8Dkg44bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Plane algebraic curves</title><source>AMS All Books Online</source><creator>Fischer, Gerd</creator><creatorcontrib>Fischer, Gerd</creatorcontrib><description>The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as analysis and topology, that is typical of complex algebraic geometry, but without the need for advanced techniques from commutative algebra or the abstract machinery of sheaves and schemes. In the first half of this book, Fischer introduces some elementary geometrical aspects, such as tangents, singularities, inflection points, and so on.The main technical tool is the concept of intersection multiplicity and Bezout's theorem. This part culminates in the beautiful Plucker formulas, which relate the various invariants introduced earlier. The second part of the book is essentially a detailed outline of modern methods of local analytic geometry in the context of complex curves. This provides the stronger tools needed for a good understanding of duality and an efficient means of computing intersection multiplicities introduced earlier. Thus, we meet rings of power series, germs of curves, and formal parametrizations. Finally, through the patching of the local information, a Riemann surface is associated to an algebraic curve, thus linking the algebra and the analysis.Concrete examples and figures are given throughout the text, and when possible, procedures are given for computing by using polynomials and power series. Several appendices gather supporting material from algebra and topology and expand on interesting geometric topics. This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help the student establish the appropriate geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher dimensional varieties. This is the English translation of a German work originally published by Vieweg Verlag (Wiesbaden, Germany).</description><identifier>ISBN: 9780821821220</identifier><identifier>ISBN: 0821821229</identifier><identifier>EISBN: 9781470421311</identifier><identifier>EISBN: 1470421313</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Curves, Algebraic</subject><creationdate>2015</creationdate><tpages>231</tpages><format>231</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Student mathematical library</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786</link.rule.ids></links><search><creatorcontrib>Fischer, Gerd</creatorcontrib><title>Plane algebraic curves</title><description>The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as analysis and topology, that is typical of complex algebraic geometry, but without the need for advanced techniques from commutative algebra or the abstract machinery of sheaves and schemes. In the first half of this book, Fischer introduces some elementary geometrical aspects, such as tangents, singularities, inflection points, and so on.The main technical tool is the concept of intersection multiplicity and Bezout's theorem. This part culminates in the beautiful Plucker formulas, which relate the various invariants introduced earlier. The second part of the book is essentially a detailed outline of modern methods of local analytic geometry in the context of complex curves. This provides the stronger tools needed for a good understanding of duality and an efficient means of computing intersection multiplicities introduced earlier. Thus, we meet rings of power series, germs of curves, and formal parametrizations. Finally, through the patching of the local information, a Riemann surface is associated to an algebraic curve, thus linking the algebra and the analysis.Concrete examples and figures are given throughout the text, and when possible, procedures are given for computing by using polynomials and power series. Several appendices gather supporting material from algebra and topology and expand on interesting geometric topics. This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help the student establish the appropriate geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher dimensional varieties. This is the English translation of a German work originally published by Vieweg Verlag (Wiesbaden, Germany).</description><subject>Curves, Algebraic</subject><isbn>9780821821220</isbn><isbn>0821821229</isbn><isbn>9781470421311</isbn><isbn>1470421313</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2015</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVj0trAjEURlNEsIyzde3WxcB9JCZZitgHDCjofriTydhq6ICx9u-3tN0IHxzO5sD3oEpvHWoLmpARR78OjvBnRDBRZc4nACDjiTQ9qtkuyUecSzrG9iLvYR4-L7eYp2rcS8qx_Geh9k-bw_qlqrfPr-tVXYkxVBltCRjJGkaA4HrNXfCeXDAuiIncg_aBjOsBnVhYekGRji3buPTAhVr8VSWf41d-G9I1N7cU22E45-buCX8Dkg44bA</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Fischer, Gerd</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20150102</creationdate><title>Plane algebraic curves</title><author>Fischer, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a552-54720312753100c8f43dc9928c58ca5e3f049c258f018a7069a1aad3737e6903</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Curves, Algebraic</topic><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Gerd</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Gerd</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Plane algebraic curves</btitle><seriestitle>Student mathematical library</seriestitle><date>2015-01-02</date><risdate>2015</risdate><volume>15</volume><isbn>9780821821220</isbn><isbn>0821821229</isbn><eisbn>9781470421311</eisbn><eisbn>1470421313</eisbn><abstract>The study of the zeroes of polynomials, which for one variable is essentially algebraic, becomes a geometric theory for several variables. In this book, Fischer looks at the classic entry point to the subject: plane algebraic curves. Here one quickly sees the mix of algebra and geometry, as well as analysis and topology, that is typical of complex algebraic geometry, but without the need for advanced techniques from commutative algebra or the abstract machinery of sheaves and schemes. In the first half of this book, Fischer introduces some elementary geometrical aspects, such as tangents, singularities, inflection points, and so on.The main technical tool is the concept of intersection multiplicity and Bezout's theorem. This part culminates in the beautiful Plucker formulas, which relate the various invariants introduced earlier. The second part of the book is essentially a detailed outline of modern methods of local analytic geometry in the context of complex curves. This provides the stronger tools needed for a good understanding of duality and an efficient means of computing intersection multiplicities introduced earlier. Thus, we meet rings of power series, germs of curves, and formal parametrizations. Finally, through the patching of the local information, a Riemann surface is associated to an algebraic curve, thus linking the algebra and the analysis.Concrete examples and figures are given throughout the text, and when possible, procedures are given for computing by using polynomials and power series. Several appendices gather supporting material from algebra and topology and expand on interesting geometric topics. This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help the student establish the appropriate geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher dimensional varieties. This is the English translation of a German work originally published by Vieweg Verlag (Wiesbaden, Germany).</abstract><pub>American Mathematical Society</pub><tpages>231</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9780821821220
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9781470421311
source AMS All Books Online
subjects Curves, Algebraic
title Plane algebraic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-askewsholts&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Plane%20algebraic%20curves&rft.au=Fischer,%20Gerd&rft.date=2015-01-02&rft.volume=15&rft.isbn=9780821821220&rft.isbn_list=0821821229&rft_id=info:doi/&rft_dat=%3Caskewsholts%3E9781470421311%3C/askewsholts%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781470421311&rft.eisbn_list=1470421313&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true