Linear Mixed-Effects Models Using R: A Step-by-Step Approach

Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Galecki, Andrzej, Burzykowski, Tomasz
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Galecki, Andrzej
Burzykowski, Tomasz
description Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
doi_str_mv 10.1007/978-1-4614-3900-4
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781461439004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC1030494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a42995-c4d1051151a85463ea073c047c315417a58863d84ad695a88699289109cdc5c13</originalsourceid><addsrcrecordid>eNpdkEtP4zAUhT3iIUqnP4BdNCwQCw_3-hHbS6jKQypCQoBmZ3kctw0NcYnL699PQhBisGTZ5_jzObIJ2UP4jQDqyChNkYocBeUGgIofZNR62DmdITa-6U0yaHdItZJ_tsguA2RGoJZqmww00xzaaXbIKKV7aIdWhoEZkP1pWQfXZJflayjoZDYLfp2yy1iEKmW3qazn2fVPsjVzVQqjj3VI7k4nN-NzOr06uxgfT6kTzBhJvSgQJKJEp6XIeXCguAehPEcpUDmpdc4LLVyRG-laYQzTBsH4wkuPfEgO-2CXluElLWK1Tva5Cn9jXCb733NbNuvZ4GNdJrtqygfXvFnMQSrOTFs9JEc9ktrDeh4a2wch2O6Pu0CLtou0XabtQg_6G6smPj6FtLbv3T7U68ZVdnIyRuAgTEf-6klfurqIn_W9lMAU5F8gl1xV1qV9iHWcN261SFZyaUTO-D-O_IWX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC1030494</pqid></control><display><type>book</type><title>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</title><source>Springer Books</source><creator>Galecki, Andrzej ; Burzykowski, Tomasz</creator><contributor>Burzykowski, Tomasz</contributor><creatorcontrib>Galecki, Andrzej ; Burzykowski, Tomasz ; Burzykowski, Tomasz</creatorcontrib><description>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</description><edition>1. Aufl.</edition><identifier>ISSN: 1431-875X</identifier><identifier>ISBN: 9781461439004</identifier><identifier>ISBN: 1461439000</identifier><identifier>ISBN: 9781461438991</identifier><identifier>ISBN: 1461438993</identifier><identifier>ISBN: 1489996672</identifier><identifier>ISBN: 9781489996671</identifier><identifier>EISBN: 9781461439004</identifier><identifier>EISBN: 1461439000</identifier><identifier>DOI: 10.1007/978-1-4614-3900-4</identifier><identifier>OCLC: 828302839</identifier><identifier>LCCN: 2012941857</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Anwendungssoftware ; Linear models (Statistics) ; Lineare Regression ; Mathematics and Statistics ; Probabilities &amp; applied mathematics ; R (Computer program language) ; Regressionsanalyse ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Statistics, general ; Statistische Methode</subject><creationdate>2013</creationdate><tpages>556</tpages><format>556</format><rights>Springer Science+Business Media New York 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Texts in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-1-4614-3900-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4614-3900-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,776,780,782,4034,27902,38232,42487</link.rule.ids></links><search><contributor>Burzykowski, Tomasz</contributor><creatorcontrib>Galecki, Andrzej</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><title>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</title><description>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</description><subject>Anwendungssoftware</subject><subject>Linear models (Statistics)</subject><subject>Lineare Regression</subject><subject>Mathematics and Statistics</subject><subject>Probabilities &amp; applied mathematics</subject><subject>R (Computer program language)</subject><subject>Regressionsanalyse</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Statistics, general</subject><subject>Statistische Methode</subject><issn>1431-875X</issn><isbn>9781461439004</isbn><isbn>1461439000</isbn><isbn>9781461438991</isbn><isbn>1461438993</isbn><isbn>1489996672</isbn><isbn>9781489996671</isbn><isbn>9781461439004</isbn><isbn>1461439000</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2013</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkEtP4zAUhT3iIUqnP4BdNCwQCw_3-hHbS6jKQypCQoBmZ3kctw0NcYnL699PQhBisGTZ5_jzObIJ2UP4jQDqyChNkYocBeUGgIofZNR62DmdITa-6U0yaHdItZJ_tsguA2RGoJZqmww00xzaaXbIKKV7aIdWhoEZkP1pWQfXZJflayjoZDYLfp2yy1iEKmW3qazn2fVPsjVzVQqjj3VI7k4nN-NzOr06uxgfT6kTzBhJvSgQJKJEp6XIeXCguAehPEcpUDmpdc4LLVyRG-laYQzTBsH4wkuPfEgO-2CXluElLWK1Tva5Cn9jXCb733NbNuvZ4GNdJrtqygfXvFnMQSrOTFs9JEc9ktrDeh4a2wch2O6Pu0CLtou0XabtQg_6G6smPj6FtLbv3T7U68ZVdnIyRuAgTEf-6klfurqIn_W9lMAU5F8gl1xV1qV9iHWcN261SFZyaUTO-D-O_IWX</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Galecki, Andrzej</creator><creator>Burzykowski, Tomasz</creator><general>Springer Nature</general><general>Springer-Verlag</general><general>Springer</general><general>Springer New York</general><scope>I4C</scope><scope>08O</scope><scope>OQ6</scope></search><sort><creationdate>2013</creationdate><title>Linear Mixed-Effects Models Using R</title><author>Galecki, Andrzej ; Burzykowski, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a42995-c4d1051151a85463ea073c047c315417a58863d84ad695a88699289109cdc5c13</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anwendungssoftware</topic><topic>Linear models (Statistics)</topic><topic>Lineare Regression</topic><topic>Mathematics and Statistics</topic><topic>Probabilities &amp; applied mathematics</topic><topic>R (Computer program language)</topic><topic>Regressionsanalyse</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Statistics, general</topic><topic>Statistische Methode</topic><toplevel>online_resources</toplevel><creatorcontrib>Galecki, Andrzej</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection><collection>ciando eBooks</collection><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galecki, Andrzej</au><au>Burzykowski, Tomasz</au><au>Burzykowski, Tomasz</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</btitle><seriestitle>Springer Texts in Statistics</seriestitle><date>2013</date><risdate>2013</risdate><issn>1431-875X</issn><isbn>9781461439004</isbn><isbn>1461439000</isbn><isbn>9781461438991</isbn><isbn>1461438993</isbn><isbn>1489996672</isbn><isbn>9781489996671</isbn><eisbn>9781461439004</eisbn><eisbn>1461439000</eisbn><abstract>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/978-1-4614-3900-4</doi><oclcid>828302839</oclcid><tpages>556</tpages><edition>1. Aufl.</edition></addata></record>
fulltext fulltext
identifier ISSN: 1431-875X
ispartof
issn 1431-875X
language eng
recordid cdi_askewsholts_vlebooks_9781461439004
source Springer Books
subjects Anwendungssoftware
Linear models (Statistics)
Lineare Regression
Mathematics and Statistics
Probabilities & applied mathematics
R (Computer program language)
Regressionsanalyse
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Statistics, general
Statistische Methode
title Linear Mixed-Effects Models Using R: A Step-by-Step Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Linear%20Mixed-Effects%20Models%20Using%20R:%20A%20Step-by-Step%20Approach&rft.au=Galecki,%20Andrzej&rft.date=2013&rft.issn=1431-875X&rft.isbn=9781461439004&rft.isbn_list=1461439000&rft.isbn_list=9781461438991&rft.isbn_list=1461438993&rft.isbn_list=1489996672&rft.isbn_list=9781489996671&rft_id=info:doi/10.1007/978-1-4614-3900-4&rft_dat=%3Cproquest_askew%3EEBC1030494%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781461439004&rft.eisbn_list=1461439000&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1030494&rft_id=info:pmid/&rfr_iscdi=true