Linear Mixed-Effects Models Using R: A Step-by-Step Approach
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wid...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Galecki, Andrzej Burzykowski, Tomasz |
description | Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text. |
doi_str_mv | 10.1007/978-1-4614-3900-4 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781461439004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC1030494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a42995-c4d1051151a85463ea073c047c315417a58863d84ad695a88699289109cdc5c13</originalsourceid><addsrcrecordid>eNpdkEtP4zAUhT3iIUqnP4BdNCwQCw_3-hHbS6jKQypCQoBmZ3kctw0NcYnL699PQhBisGTZ5_jzObIJ2UP4jQDqyChNkYocBeUGgIofZNR62DmdITa-6U0yaHdItZJ_tsguA2RGoJZqmww00xzaaXbIKKV7aIdWhoEZkP1pWQfXZJflayjoZDYLfp2yy1iEKmW3qazn2fVPsjVzVQqjj3VI7k4nN-NzOr06uxgfT6kTzBhJvSgQJKJEp6XIeXCguAehPEcpUDmpdc4LLVyRG-laYQzTBsH4wkuPfEgO-2CXluElLWK1Tva5Cn9jXCb733NbNuvZ4GNdJrtqygfXvFnMQSrOTFs9JEc9ktrDeh4a2wch2O6Pu0CLtou0XabtQg_6G6smPj6FtLbv3T7U68ZVdnIyRuAgTEf-6klfurqIn_W9lMAU5F8gl1xV1qV9iHWcN261SFZyaUTO-D-O_IWX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC1030494</pqid></control><display><type>book</type><title>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</title><source>Springer Books</source><creator>Galecki, Andrzej ; Burzykowski, Tomasz</creator><contributor>Burzykowski, Tomasz</contributor><creatorcontrib>Galecki, Andrzej ; Burzykowski, Tomasz ; Burzykowski, Tomasz</creatorcontrib><description>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</description><edition>1. Aufl.</edition><identifier>ISSN: 1431-875X</identifier><identifier>ISBN: 9781461439004</identifier><identifier>ISBN: 1461439000</identifier><identifier>ISBN: 9781461438991</identifier><identifier>ISBN: 1461438993</identifier><identifier>ISBN: 1489996672</identifier><identifier>ISBN: 9781489996671</identifier><identifier>EISBN: 9781461439004</identifier><identifier>EISBN: 1461439000</identifier><identifier>DOI: 10.1007/978-1-4614-3900-4</identifier><identifier>OCLC: 828302839</identifier><identifier>LCCN: 2012941857</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Anwendungssoftware ; Linear models (Statistics) ; Lineare Regression ; Mathematics and Statistics ; Probabilities & applied mathematics ; R (Computer program language) ; Regressionsanalyse ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Statistics, general ; Statistische Methode</subject><creationdate>2013</creationdate><tpages>556</tpages><format>556</format><rights>Springer Science+Business Media New York 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Texts in Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-1-4614-3900-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-1-4614-3900-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,776,780,782,4034,27902,38232,42487</link.rule.ids></links><search><contributor>Burzykowski, Tomasz</contributor><creatorcontrib>Galecki, Andrzej</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><title>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</title><description>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</description><subject>Anwendungssoftware</subject><subject>Linear models (Statistics)</subject><subject>Lineare Regression</subject><subject>Mathematics and Statistics</subject><subject>Probabilities & applied mathematics</subject><subject>R (Computer program language)</subject><subject>Regressionsanalyse</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Statistics, general</subject><subject>Statistische Methode</subject><issn>1431-875X</issn><isbn>9781461439004</isbn><isbn>1461439000</isbn><isbn>9781461438991</isbn><isbn>1461438993</isbn><isbn>1489996672</isbn><isbn>9781489996671</isbn><isbn>9781461439004</isbn><isbn>1461439000</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2013</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkEtP4zAUhT3iIUqnP4BdNCwQCw_3-hHbS6jKQypCQoBmZ3kctw0NcYnL699PQhBisGTZ5_jzObIJ2UP4jQDqyChNkYocBeUGgIofZNR62DmdITa-6U0yaHdItZJ_tsguA2RGoJZqmww00xzaaXbIKKV7aIdWhoEZkP1pWQfXZJflayjoZDYLfp2yy1iEKmW3qazn2fVPsjVzVQqjj3VI7k4nN-NzOr06uxgfT6kTzBhJvSgQJKJEp6XIeXCguAehPEcpUDmpdc4LLVyRG-laYQzTBsH4wkuPfEgO-2CXluElLWK1Tva5Cn9jXCb733NbNuvZ4GNdJrtqygfXvFnMQSrOTFs9JEc9ktrDeh4a2wch2O6Pu0CLtou0XabtQg_6G6smPj6FtLbv3T7U68ZVdnIyRuAgTEf-6klfurqIn_W9lMAU5F8gl1xV1qV9iHWcN261SFZyaUTO-D-O_IWX</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Galecki, Andrzej</creator><creator>Burzykowski, Tomasz</creator><general>Springer Nature</general><general>Springer-Verlag</general><general>Springer</general><general>Springer New York</general><scope>I4C</scope><scope>08O</scope><scope>OQ6</scope></search><sort><creationdate>2013</creationdate><title>Linear Mixed-Effects Models Using R</title><author>Galecki, Andrzej ; Burzykowski, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a42995-c4d1051151a85463ea073c047c315417a58863d84ad695a88699289109cdc5c13</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anwendungssoftware</topic><topic>Linear models (Statistics)</topic><topic>Lineare Regression</topic><topic>Mathematics and Statistics</topic><topic>Probabilities & applied mathematics</topic><topic>R (Computer program language)</topic><topic>Regressionsanalyse</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Statistics, general</topic><topic>Statistische Methode</topic><toplevel>online_resources</toplevel><creatorcontrib>Galecki, Andrzej</creatorcontrib><creatorcontrib>Burzykowski, Tomasz</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection><collection>ciando eBooks</collection><collection>ECONIS</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galecki, Andrzej</au><au>Burzykowski, Tomasz</au><au>Burzykowski, Tomasz</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Linear Mixed-Effects Models Using R: A Step-by-Step Approach</btitle><seriestitle>Springer Texts in Statistics</seriestitle><date>2013</date><risdate>2013</risdate><issn>1431-875X</issn><isbn>9781461439004</isbn><isbn>1461439000</isbn><isbn>9781461438991</isbn><isbn>1461438993</isbn><isbn>1489996672</isbn><isbn>9781489996671</isbn><eisbn>9781461439004</eisbn><eisbn>1461439000</eisbn><abstract>Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/978-1-4614-3900-4</doi><oclcid>828302839</oclcid><tpages>556</tpages><edition>1. Aufl.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-875X |
ispartof | |
issn | 1431-875X |
language | eng |
recordid | cdi_askewsholts_vlebooks_9781461439004 |
source | Springer Books |
subjects | Anwendungssoftware Linear models (Statistics) Lineare Regression Mathematics and Statistics Probabilities & applied mathematics R (Computer program language) Regressionsanalyse Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Statistics, general Statistische Methode |
title | Linear Mixed-Effects Models Using R: A Step-by-Step Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Linear%20Mixed-Effects%20Models%20Using%20R:%20A%20Step-by-Step%20Approach&rft.au=Galecki,%20Andrzej&rft.date=2013&rft.issn=1431-875X&rft.isbn=9781461439004&rft.isbn_list=1461439000&rft.isbn_list=9781461438991&rft.isbn_list=1461438993&rft.isbn_list=1489996672&rft.isbn_list=9781489996671&rft_id=info:doi/10.1007/978-1-4614-3900-4&rft_dat=%3Cproquest_askew%3EEBC1030494%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781461439004&rft.eisbn_list=1461439000&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1030494&rft_id=info:pmid/&rfr_iscdi=true |