Robust Statistical Methods with R

The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jureckova, Jana, Picek, Jan, Schindler, Martin
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jureckova, Jana
Picek, Jan
Schindler, Martin
description The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics.Features Provides a systematic, practical treatment of robust statistical methods Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests Illustrates the small sensitivity of the rank procedures in the measurement error model Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book's website
format Book
fullrecord <record><control><sourceid>casalini_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781351975131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4793478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a9630-2f941900ad7caa922d0e217e6f373b60c4503a45265fd52d85d3f6c28bc1dbb43</originalsourceid><addsrcrecordid>eNqNj0tLAzEURiMiqLX_YXTnYiDJzWOylOKjUBGqroebxzihYyPeaP--SBVcuvo4cDjwHbC5s50ALZzVQqpDdvoLYI_ZnCh7rqw0oDScsPN18R9Um8eKNVPNAafmPtWxRGp2uY7N-owdDThRmv_sjD3fXD8t7trVw-1ycbVq0RngrRycEo5zjDYgOikjT1LYZAaw4A0PSnNApaXRQ9QydjrCYILsfBDRewUzdrnvIm3SjsYyVeo_p-RL2VD_5xOI_7vyu3uxdwMSTnmb-9eyLS_v-DZSr6wDZTv4Ati-VxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Robust Statistical Methods with R</title><source>Ebook Central Perpetual and DDA</source><creator>Jureckova, Jana ; Picek, Jan ; Schindler, Martin</creator><contributor>Schindler, Martin ; Picek, Jan</contributor><creatorcontrib>Jureckova, Jana ; Picek, Jan ; Schindler, Martin ; Schindler, Martin ; Picek, Jan</creatorcontrib><description>The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics.Features Provides a systematic, practical treatment of robust statistical methods Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests Illustrates the small sensitivity of the rank procedures in the measurement error model Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book's website</description><edition>Second edition.</edition><identifier>ISBN: 1351975137</identifier><identifier>ISBN: 9781351975131</identifier><identifier>ISBN: 113803536X</identifier><identifier>ISBN: 9781138035362</identifier><identifier>EISBN: 9781351975124</identifier><identifier>EISBN: 1351975129</identifier><identifier>EISBN: 1351975137</identifier><identifier>EISBN: 9781351975131</identifier><language>eng</language><publisher>United States: Chapman &amp; Hall</publisher><subject>Probabilities &amp; applied mathematics ; R (Computer program language) ; Robust statistics</subject><creationdate>2019</creationdate><tpages>268</tpages><format>268</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782</link.rule.ids></links><search><contributor>Schindler, Martin</contributor><contributor>Picek, Jan</contributor><creatorcontrib>Jureckova, Jana</creatorcontrib><creatorcontrib>Picek, Jan</creatorcontrib><creatorcontrib>Schindler, Martin</creatorcontrib><title>Robust Statistical Methods with R</title><description>The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics.Features Provides a systematic, practical treatment of robust statistical methods Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests Illustrates the small sensitivity of the rank procedures in the measurement error model Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book's website</description><subject>Probabilities &amp; applied mathematics</subject><subject>R (Computer program language)</subject><subject>Robust statistics</subject><isbn>1351975137</isbn><isbn>9781351975131</isbn><isbn>113803536X</isbn><isbn>9781138035362</isbn><isbn>9781351975124</isbn><isbn>1351975129</isbn><isbn>1351975137</isbn><isbn>9781351975131</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNqNj0tLAzEURiMiqLX_YXTnYiDJzWOylOKjUBGqroebxzihYyPeaP--SBVcuvo4cDjwHbC5s50ALZzVQqpDdvoLYI_ZnCh7rqw0oDScsPN18R9Um8eKNVPNAafmPtWxRGp2uY7N-owdDThRmv_sjD3fXD8t7trVw-1ycbVq0RngrRycEo5zjDYgOikjT1LYZAaw4A0PSnNApaXRQ9QydjrCYILsfBDRewUzdrnvIm3SjsYyVeo_p-RL2VD_5xOI_7vyu3uxdwMSTnmb-9eyLS_v-DZSr6wDZTv4Ati-VxQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jureckova, Jana</creator><creator>Picek, Jan</creator><creator>Schindler, Martin</creator><general>Chapman &amp; Hall</general><scope>I4C</scope></search><sort><creationdate>2019</creationdate><title>Robust Statistical Methods with R</title><author>Jureckova, Jana ; Picek, Jan ; Schindler, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a9630-2f941900ad7caa922d0e217e6f373b60c4503a45265fd52d85d3f6c28bc1dbb43</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Probabilities &amp; applied mathematics</topic><topic>R (Computer program language)</topic><topic>Robust statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Jureckova, Jana</creatorcontrib><creatorcontrib>Picek, Jan</creatorcontrib><creatorcontrib>Schindler, Martin</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jureckova, Jana</au><au>Picek, Jan</au><au>Schindler, Martin</au><au>Schindler, Martin</au><au>Picek, Jan</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Robust Statistical Methods with R</btitle><date>2019</date><risdate>2019</risdate><isbn>1351975137</isbn><isbn>9781351975131</isbn><isbn>113803536X</isbn><isbn>9781138035362</isbn><eisbn>9781351975124</eisbn><eisbn>1351975129</eisbn><eisbn>1351975137</eisbn><eisbn>9781351975131</eisbn><abstract>The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics.Features Provides a systematic, practical treatment of robust statistical methods Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests Illustrates the small sensitivity of the rank procedures in the measurement error model Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book's website</abstract><cop>United States</cop><pub>Chapman &amp; Hall</pub><tpages>268</tpages><edition>Second edition.</edition></addata></record>
fulltext fulltext
identifier ISBN: 1351975137
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9781351975131
source Ebook Central Perpetual and DDA
subjects Probabilities & applied mathematics
R (Computer program language)
Robust statistics
title Robust Statistical Methods with R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-casalini_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Robust%20Statistical%20Methods%20with%20R&rft.au=Jureckova,%20Jana&rft.date=2019&rft.isbn=1351975137&rft.isbn_list=9781351975131&rft.isbn_list=113803536X&rft.isbn_list=9781138035362&rft_id=info:doi/&rft_dat=%3Ccasalini_askew%3E4793478%3C/casalini_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781351975124&rft.eisbn_list=1351975129&rft.eisbn_list=1351975137&rft.eisbn_list=9781351975131&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true