Computational fractional dynamical systems: fractional differential equations and applications
Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering app...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena |
description | Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. * Covers various aspects of efficient methods regarding fractional-order systems * Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering * Provides a systematic approach for handling fractional-order models arising in science and engineering * Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations. |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781119696995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7113812</sourcerecordid><originalsourceid>FETCH-LOGICAL-a12533-2eaaeff22c4df6e309534ab78008fe1f990d58d1d580763bb14764ee9d64905e3</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxSOiqOt-Aw96EoWFJJOkyVHL-gcWvIh4C2k70XXbZm26LuunN9qCDMy84f14MLNHThhjRqWSr_tkajI97hrEYTJBaKEZ5-qITGP8oJTyjIFk8phc56FZb3rXL0Pr6nPfuXKU1a51zbJMKu5ij008JQfe1RGn45yQl7v5c_4wWzzdP-Y3i5ljXALMODqH3nNeisorBGokCFdkmlLtkXljaCV1xVKjmYKiYCJTAtFUShgqESbkagh2cYXb-B7qPtqvGosQVtH-X2dS8IRcDuy6C58bjL39w0ps-87Vdn6bZ4xBOj6RZyOJXY1vwQ5xkClOza99MdiN6zbf2Np1t0xyZyG9i0mtDcAPgWJl8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7113812</pqid></control><display><type>book</type><title>Computational fractional dynamical systems: fractional differential equations and applications</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><source>Ebook Central Perpetual and DDA</source><creator>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</creator><creatorcontrib>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</creatorcontrib><description>Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. * Covers various aspects of efficient methods regarding fractional-order systems * Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering * Provides a systematic approach for handling fractional-order models arising in science and engineering * Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.</description><edition>1</edition><identifier>ISBN: 9781119696834</identifier><identifier>ISBN: 1119696836</identifier><identifier>ISBN: 1119696992</identifier><identifier>ISBN: 9781119696995</identifier><identifier>ISBN: 111969695X</identifier><identifier>ISBN: 9781119696957</identifier><identifier>EISBN: 111969695X</identifier><identifier>EISBN: 9781119696957</identifier><identifier>EISBN: 9781119696834</identifier><identifier>EISBN: 1119696836</identifier><identifier>EISBN: 1119696992</identifier><identifier>EISBN: 9781119696995</identifier><identifier>OCLC: 1348481226</identifier><language>eng</language><publisher>Newark: Wiley</publisher><subject>Fractional differential equations ; MATHEMATICS</subject><creationdate>2022</creationdate><tpages>268</tpages><format>268</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://ebookcentral.proquest.com/lib/munchentech/reader.action?docID=7113812$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=7113812$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>306,780,784,786,24780,79396,79397</link.rule.ids></links><search><creatorcontrib>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</creatorcontrib><title>Computational fractional dynamical systems: fractional differential equations and applications</title><description>Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. * Covers various aspects of efficient methods regarding fractional-order systems * Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering * Provides a systematic approach for handling fractional-order models arising in science and engineering * Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.</description><subject>Fractional differential equations</subject><subject>MATHEMATICS</subject><isbn>9781119696834</isbn><isbn>1119696836</isbn><isbn>1119696992</isbn><isbn>9781119696995</isbn><isbn>111969695X</isbn><isbn>9781119696957</isbn><isbn>111969695X</isbn><isbn>9781119696957</isbn><isbn>9781119696834</isbn><isbn>1119696836</isbn><isbn>1119696992</isbn><isbn>9781119696995</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><recordid>eNpFkE9LxDAQxSOiqOt-Aw96EoWFJJOkyVHL-gcWvIh4C2k70XXbZm26LuunN9qCDMy84f14MLNHThhjRqWSr_tkajI97hrEYTJBaKEZ5-qITGP8oJTyjIFk8phc56FZb3rXL0Pr6nPfuXKU1a51zbJMKu5ij008JQfe1RGn45yQl7v5c_4wWzzdP-Y3i5ljXALMODqH3nNeisorBGokCFdkmlLtkXljaCV1xVKjmYKiYCJTAtFUShgqESbkagh2cYXb-B7qPtqvGosQVtH-X2dS8IRcDuy6C58bjL39w0ps-87Vdn6bZ4xBOj6RZyOJXY1vwQ5xkClOza99MdiN6zbf2Np1t0xyZyG9i0mtDcAPgWJl8w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</creator><general>Wiley</general><general>John Wiley & Sons, Incorporated</general><general>Wiley-Blackwell</general><scope>MOSFZ</scope><scope>PS5</scope><scope>YSPEL</scope></search><sort><creationdate>2022</creationdate><title>Computational fractional dynamical systems</title><author>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a12533-2eaaeff22c4df6e309534ab78008fe1f990d58d1d580763bb14764ee9d64905e3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fractional differential equations</topic><topic>MATHEMATICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</creatorcontrib><collection>Maruzen eBook Library</collection><collection>Maruzen eBook Library (Global)</collection><collection>Perlego</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Computational fractional dynamical systems: fractional differential equations and applications</btitle><date>2022</date><risdate>2022</risdate><isbn>9781119696834</isbn><isbn>1119696836</isbn><isbn>1119696992</isbn><isbn>9781119696995</isbn><isbn>111969695X</isbn><isbn>9781119696957</isbn><eisbn>111969695X</eisbn><eisbn>9781119696957</eisbn><eisbn>9781119696834</eisbn><eisbn>1119696836</eisbn><eisbn>1119696992</eisbn><eisbn>9781119696995</eisbn><abstract>Computational Fractional Dynamical Systems A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. * Covers various aspects of efficient methods regarding fractional-order systems * Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering * Provides a systematic approach for handling fractional-order models arising in science and engineering * Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.</abstract><cop>Newark</cop><pub>Wiley</pub><oclcid>1348481226</oclcid><tpages>268</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781119696834 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9781119696995 |
source | O'Reilly Online Learning: Academic/Public Library Edition; Ebook Central Perpetual and DDA |
subjects | Fractional differential equations MATHEMATICS |
title | Computational fractional dynamical systems: fractional differential equations and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Computational%20fractional%20dynamical%20systems:%20fractional%20differential%20equations%20and%20applications&rft.au=Snehashish%20Chakraverty,%20Rajarama%20M.%20Jena,%20Subrat%20K.%20Jena&rft.date=2022&rft.isbn=9781119696834&rft.isbn_list=1119696836&rft.isbn_list=1119696992&rft.isbn_list=9781119696995&rft.isbn_list=111969695X&rft_id=info:doi/&rft_dat=%3Cproquest_askew%3EEBC7113812%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=111969695X&rft.eisbn_list=9781119696957&rft.eisbn_list=9781119696834&rft.eisbn_list=1119696836&rft.eisbn_list=1119696992&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7113812&rft_id=info:pmid/&rfr_iscdi=true |