Control Systems and Reinforcement Learning
A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Meyn, Sean |
description | A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning. |
doi_str_mv | 10.1017/9781009051873 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781009063395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_9781009051873</cupid><sourcerecordid>EBC7029086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a11302-b06fba187567ef8dae263986a904587fba7896e91931d039712ab9ac1d69069b3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxVdEUWuP3nMThepMNvsxRw31AwqCitdlk2xqbJrV3aj43xvbingaHvPj8d5j7AjhDAHVOSmNAAQCteJb7OBPbA-CoxSIJGF3JTCjVAncY-MYXwAgFZQR4T47zX3XB98mD1-xd8uY2K5K7l3T1T6Ubum6Ppk5G7qmmx-yndq20Y03d8SerqaP-c1kdnd9m1_MJhaRQzopQNaFHYIIqVytK-tSyUlLS5AJrYaf0iQdIXGsgJPC1BZkS6wkgaSCj9jJ2tjGhfuMz77to_loXeH9Iprf3pJzEgN7vGZfg397d7E3K6wcggfbmullriAl0HIgYU2WdlmEppo7U_qwMUUwP6Oaf6Pyb_i_YvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7029086</pqid></control><display><type>book</type><title>Control Systems and Reinforcement Learning</title><source>Cambridge Core All Books</source><creator>Meyn, Sean</creator><creatorcontrib>Meyn, Sean</creatorcontrib><description>A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.</description><edition>1</edition><identifier>ISBN: 1316511960</identifier><identifier>ISBN: 9781316511961</identifier><identifier>EISBN: 1009051873</identifier><identifier>EISBN: 9781009051873</identifier><identifier>EISBN: 9781009063395</identifier><identifier>EISBN: 1009063391</identifier><identifier>DOI: 10.1017/9781009051873</identifier><identifier>OCLC: 1311492751</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Control theory ; Reinforcement learning</subject><creationdate>2022</creationdate><tpages>454</tpages><format>454</format><rights>Sean Meyn 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,27924,54065</link.rule.ids></links><search><creatorcontrib>Meyn, Sean</creatorcontrib><title>Control Systems and Reinforcement Learning</title><description>A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.</description><subject>Control theory</subject><subject>Reinforcement learning</subject><isbn>1316511960</isbn><isbn>9781316511961</isbn><isbn>1009051873</isbn><isbn>9781009051873</isbn><isbn>9781009063395</isbn><isbn>1009063391</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVkM1Lw0AQxVdEUWuP3nMThepMNvsxRw31AwqCitdlk2xqbJrV3aj43xvbingaHvPj8d5j7AjhDAHVOSmNAAQCteJb7OBPbA-CoxSIJGF3JTCjVAncY-MYXwAgFZQR4T47zX3XB98mD1-xd8uY2K5K7l3T1T6Ubum6Ppk5G7qmmx-yndq20Y03d8SerqaP-c1kdnd9m1_MJhaRQzopQNaFHYIIqVytK-tSyUlLS5AJrYaf0iQdIXGsgJPC1BZkS6wkgaSCj9jJ2tjGhfuMz77to_loXeH9Iprf3pJzEgN7vGZfg397d7E3K6wcggfbmullriAl0HIgYU2WdlmEppo7U_qwMUUwP6Oaf6Pyb_i_YvY</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Meyn, Sean</creator><general>Cambridge University Press</general><scope/></search><sort><creationdate>20220517</creationdate><title>Control Systems and Reinforcement Learning</title><author>Meyn, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a11302-b06fba187567ef8dae263986a904587fba7896e91931d039712ab9ac1d69069b3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control theory</topic><topic>Reinforcement learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Meyn, Sean</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyn, Sean</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Control Systems and Reinforcement Learning</btitle><date>2022-05-17</date><risdate>2022</risdate><isbn>1316511960</isbn><isbn>9781316511961</isbn><eisbn>1009051873</eisbn><eisbn>9781009051873</eisbn><eisbn>9781009063395</eisbn><eisbn>1009063391</eisbn><abstract>A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/9781009051873</doi><oclcid>1311492751</oclcid><tpages>454</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1316511960 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9781009063395 |
source | Cambridge Core All Books |
subjects | Control theory Reinforcement learning |
title | Control Systems and Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Control%20Systems%20and%20Reinforcement%20Learning&rft.au=Meyn,%20Sean&rft.date=2022-05-17&rft.isbn=1316511960&rft.isbn_list=9781316511961&rft_id=info:doi/10.1017/9781009051873&rft_dat=%3Cproquest_askew%3EEBC7029086%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=1009051873&rft.eisbn_list=9781009051873&rft.eisbn_list=9781009063395&rft.eisbn_list=1009063391&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7029086&rft_id=info:pmid/&rft_cupid=10_1017_9781009051873&rfr_iscdi=true |