Stacks Project Expository Collection

The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Belmans, Pieter, Ho, Wei, de Jong, Aise Johan
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Belmans, Pieter
Ho, Wei
de Jong, Aise Johan
description The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
doi_str_mv 10.1017/9781009051897
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781009063289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_9781009051897</cupid><sourcerecordid>EBC7123112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a14326-419b133ab663c82f34d286807a4f99d48985cb00276369a05ed1bfd7a05b8e6b3</originalsourceid><addsrcrecordid>eNpVUE1LAzEQjYiirj1670EQD9WZJJuPoy71AwoKingLSTarbdembtaq_96tbQUPw8wbHu_NPEKOEM4QUJ5rqRBAQ45Kyy1y8AeetzeAq1zsdoBxTRVwinukl9IEAKiiSrN8nxw_tNZPU_--iZPg2_7wax7TuI3Nd7-Idd2txnF2SHYqW6fQW_eMPF0NH4ubweju-ra4GA0sckbFgKN2yJh1QjCvaMV4SZVQIC2vtC650ir3rnOXggltIQ8luqqU3eRUEI5l5HQlbNM0fKbXWLfJLOrgYpwms_lYsOXxGTlZcedNfP8IqTW_NB9mbWNrM7wsJFKGXWUEVkxv31wzLl-C8bFZiyKYZZzmX5zsB11_YPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7123112</pqid></control><display><type>book</type><title>Stacks Project Expository Collection</title><source>Ebook Central Perpetual and DDA</source><creator>Belmans, Pieter ; Ho, Wei ; de Jong, Aise Johan</creator><contributor>Belmans, Pieter</contributor><creatorcontrib>Belmans, Pieter ; Ho, Wei ; de Jong, Aise Johan ; Belmans, Pieter</creatorcontrib><description>The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.</description><edition>1</edition><identifier>ISBN: 1009054856</identifier><identifier>ISBN: 9781009054850</identifier><identifier>EISBN: 100905189X</identifier><identifier>EISBN: 9781009051897</identifier><identifier>EISBN: 9781009063289</identifier><identifier>EISBN: 1009063286</identifier><identifier>DOI: 10.1017/9781009051897</identifier><identifier>OCLC: 1349280421</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algebraic spaces ; Algebraic stacks ; Geometry, Algebraic</subject><creationdate>2022</creationdate><tpages>308</tpages><format>308</format><rights>Cambridge University Press 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>London Mathematical Society lecture note series</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,27925</link.rule.ids></links><search><contributor>Belmans, Pieter</contributor><creatorcontrib>Belmans, Pieter</creatorcontrib><creatorcontrib>Ho, Wei</creatorcontrib><creatorcontrib>de Jong, Aise Johan</creatorcontrib><title>Stacks Project Expository Collection</title><description>The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.</description><subject>Algebraic spaces</subject><subject>Algebraic stacks</subject><subject>Geometry, Algebraic</subject><isbn>1009054856</isbn><isbn>9781009054850</isbn><isbn>100905189X</isbn><isbn>9781009051897</isbn><isbn>9781009063289</isbn><isbn>1009063286</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVUE1LAzEQjYiirj1670EQD9WZJJuPoy71AwoKingLSTarbdembtaq_96tbQUPw8wbHu_NPEKOEM4QUJ5rqRBAQ45Kyy1y8AeetzeAq1zsdoBxTRVwinukl9IEAKiiSrN8nxw_tNZPU_--iZPg2_7wax7TuI3Nd7-Idd2txnF2SHYqW6fQW_eMPF0NH4ubweju-ra4GA0sckbFgKN2yJh1QjCvaMV4SZVQIC2vtC650ir3rnOXggltIQ8luqqU3eRUEI5l5HQlbNM0fKbXWLfJLOrgYpwms_lYsOXxGTlZcedNfP8IqTW_NB9mbWNrM7wsJFKGXWUEVkxv31wzLl-C8bFZiyKYZZzmX5zsB11_YPA</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Belmans, Pieter</creator><creator>Ho, Wei</creator><creator>de Jong, Aise Johan</creator><general>Cambridge University Press</general><scope/></search><sort><creationdate>20221006</creationdate><title>Stacks Project Expository Collection</title><author>Belmans, Pieter ; Ho, Wei ; de Jong, Aise Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a14326-419b133ab663c82f34d286807a4f99d48985cb00276369a05ed1bfd7a05b8e6b3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic spaces</topic><topic>Algebraic stacks</topic><topic>Geometry, Algebraic</topic><toplevel>online_resources</toplevel><creatorcontrib>Belmans, Pieter</creatorcontrib><creatorcontrib>Ho, Wei</creatorcontrib><creatorcontrib>de Jong, Aise Johan</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belmans, Pieter</au><au>Ho, Wei</au><au>de Jong, Aise Johan</au><au>Belmans, Pieter</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Stacks Project Expository Collection</btitle><seriestitle>London Mathematical Society lecture note series</seriestitle><date>2022-10-06</date><risdate>2022</risdate><isbn>1009054856</isbn><isbn>9781009054850</isbn><eisbn>100905189X</eisbn><eisbn>9781009051897</eisbn><eisbn>9781009063289</eisbn><eisbn>1009063286</eisbn><abstract>The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/9781009051897</doi><oclcid>1349280421</oclcid><tpages>308</tpages><edition>1</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 1009054856
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9781009063289
source Ebook Central Perpetual and DDA
subjects Algebraic spaces
Algebraic stacks
Geometry, Algebraic
title Stacks Project Expository Collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Stacks%20Project%20Expository%20Collection&rft.au=Belmans,%20Pieter&rft.date=2022-10-06&rft.isbn=1009054856&rft.isbn_list=9781009054850&rft_id=info:doi/10.1017/9781009051897&rft_dat=%3Cproquest_askew%3EEBC7123112%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=100905189X&rft.eisbn_list=9781009051897&rft.eisbn_list=9781009063289&rft.eisbn_list=1009063286&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7123112&rft_id=info:pmid/&rft_cupid=10_1017_9781009051897&rfr_iscdi=true