Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers. Stat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 1 |
creator | Yu, Qingzhao |
description | Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third-variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.
Key Features:
Parametric and nonparametric method in third variable analysis
Multivariate and Multiple third-variable effect analysis
Multilevel mediation/confounding analysis
Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis
R packages and SAS macros to implement methods proposed in the book |
doi_str_mv | 10.1201/9780429346941 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9781000549485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6864797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a9168-c27acfe402d317fdaf54cb102b3bff7c99b16c2a84813f063b1dcb2fb2d426d33</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxY0QCCg5cl9xQUgEbK_t3T2GKHxIrZAI5WqNvxqrrl0821b973ETBPTWk_30fm9GekPIK0bfM07Zh2kYqeBTL9Qk2COyuKcf7zWjlErRpHpKXrDmcSGbekYWiNFQMaqBKjk-Jz-3M8wR52ghdSd-3hWHXSi1_V1sTsnvunXJoVxlF_NZB9l1J8X5uve6VYZ0ixG7U7xzv-_97Wr7kjwJkNAv_rxH5PTT5sf6y_L42-ev69XxEiamxqXlA9jgBeWuZ0NwEKSwhlFuehPCYKfJMGU5jGJkfaCqN8xZw4PhTnDl-v6IvD3MBTz3N7graUZ9nbwp5Rz1f0WM8uEsU419c2Ava_l15XHWe8z6PFdIevNxrUYlhmlopDiQsZVUL-Cm1OT0DLep1FAh24h_F_y7UottHhZjVN8d_X5cX_uKrX_e5rw-zLGAkGKO-qLkclbhcodacsmkpP1vlaypXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6864797</pqid></control><display><type>book</type><title>Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS</title><source>Ebook Central Perpetual and DDA</source><creator>Yu, Qingzhao</creator><contributor>Li, Bin</contributor><creatorcontrib>Yu, Qingzhao ; Li, Bin</creatorcontrib><description>Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third-variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.
Key Features:
Parametric and nonparametric method in third variable analysis
Multivariate and Multiple third-variable effect analysis
Multilevel mediation/confounding analysis
Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis
R packages and SAS macros to implement methods proposed in the book</description><edition>1</edition><identifier>ISBN: 9781000549416</identifier><identifier>ISBN: 1000549410</identifier><identifier>ISBN: 9781032220086</identifier><identifier>ISBN: 1032220082</identifier><identifier>ISBN: 9780367365479</identifier><identifier>ISBN: 0367365472</identifier><identifier>ISBN: 0367365499</identifier><identifier>ISBN: 9780367365493</identifier><identifier>EISBN: 9780429346941</identifier><identifier>EISBN: 0429346948</identifier><identifier>EISBN: 9781000549416</identifier><identifier>EISBN: 9781000549485</identifier><identifier>EISBN: 1000549488</identifier><identifier>EISBN: 1000549410</identifier><identifier>DOI: 10.1201/9780429346941</identifier><identifier>OCLC: 1293245941</identifier><language>eng</language><publisher>United States: CRC Press</publisher><subject>confounding effects ; health disparities ; interaction effect ; intervention effect ; moderation ; Multiple multivariate mediation analysis ; Multivariate Statistics ; nonparametric models ; Probabilities & applied mathematics ; R (Computer program language) ; SAS (Computer program language) ; Statistical Theory & Methods ; Statistics ; Statistics-Data processing ; Statistics-Methodology ; Variables (Mathematics)</subject><creationdate>2022</creationdate><tpages>16</tpages><tpages>294</tpages><tpages>278</tpages><format>16</format><rights>2022 Taylor & Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Chapman & Hall/CRC Biostatistics Series</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,24780,27925</link.rule.ids></links><search><contributor>Li, Bin</contributor><creatorcontrib>Yu, Qingzhao</creatorcontrib><title>Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS</title><description>Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third-variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.
Key Features:
Parametric and nonparametric method in third variable analysis
Multivariate and Multiple third-variable effect analysis
Multilevel mediation/confounding analysis
Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis
R packages and SAS macros to implement methods proposed in the book</description><subject>confounding effects</subject><subject>health disparities</subject><subject>interaction effect</subject><subject>intervention effect</subject><subject>moderation</subject><subject>Multiple multivariate mediation analysis</subject><subject>Multivariate Statistics</subject><subject>nonparametric models</subject><subject>Probabilities & applied mathematics</subject><subject>R (Computer program language)</subject><subject>SAS (Computer program language)</subject><subject>Statistical Theory & Methods</subject><subject>Statistics</subject><subject>Statistics-Data processing</subject><subject>Statistics-Methodology</subject><subject>Variables (Mathematics)</subject><isbn>9781000549416</isbn><isbn>1000549410</isbn><isbn>9781032220086</isbn><isbn>1032220082</isbn><isbn>9780367365479</isbn><isbn>0367365472</isbn><isbn>0367365499</isbn><isbn>9780367365493</isbn><isbn>9780429346941</isbn><isbn>0429346948</isbn><isbn>9781000549416</isbn><isbn>9781000549485</isbn><isbn>1000549488</isbn><isbn>1000549410</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNqNkc1vEzEQxY0QCCg5cl9xQUgEbK_t3T2GKHxIrZAI5WqNvxqrrl0821b973ETBPTWk_30fm9GekPIK0bfM07Zh2kYqeBTL9Qk2COyuKcf7zWjlErRpHpKXrDmcSGbekYWiNFQMaqBKjk-Jz-3M8wR52ghdSd-3hWHXSi1_V1sTsnvunXJoVxlF_NZB9l1J8X5uve6VYZ0ixG7U7xzv-_97Wr7kjwJkNAv_rxH5PTT5sf6y_L42-ev69XxEiamxqXlA9jgBeWuZ0NwEKSwhlFuehPCYKfJMGU5jGJkfaCqN8xZw4PhTnDl-v6IvD3MBTz3N7graUZ9nbwp5Rz1f0WM8uEsU419c2Ava_l15XHWe8z6PFdIevNxrUYlhmlopDiQsZVUL-Cm1OT0DLep1FAh24h_F_y7UottHhZjVN8d_X5cX_uKrX_e5rw-zLGAkGKO-qLkclbhcodacsmkpP1vlaypXw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yu, Qingzhao</creator><general>CRC Press</general><general>CRC Press LLC</general><general>Chapman & Hall</general><scope>I4C</scope></search><sort><creationdate>2022</creationdate><title>Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS</title><author>Yu, Qingzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a9168-c27acfe402d317fdaf54cb102b3bff7c99b16c2a84813f063b1dcb2fb2d426d33</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>confounding effects</topic><topic>health disparities</topic><topic>interaction effect</topic><topic>intervention effect</topic><topic>moderation</topic><topic>Multiple multivariate mediation analysis</topic><topic>Multivariate Statistics</topic><topic>nonparametric models</topic><topic>Probabilities & applied mathematics</topic><topic>R (Computer program language)</topic><topic>SAS (Computer program language)</topic><topic>Statistical Theory & Methods</topic><topic>Statistics</topic><topic>Statistics-Data processing</topic><topic>Statistics-Methodology</topic><topic>Variables (Mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Qingzhao</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Qingzhao</au><au>Li, Bin</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS</btitle><seriestitle>Chapman & Hall/CRC Biostatistics Series</seriestitle><date>2022</date><risdate>2022</risdate><volume>1</volume><isbn>9781000549416</isbn><isbn>1000549410</isbn><isbn>9781032220086</isbn><isbn>1032220082</isbn><isbn>9780367365479</isbn><isbn>0367365472</isbn><isbn>0367365499</isbn><isbn>9780367365493</isbn><eisbn>9780429346941</eisbn><eisbn>0429346948</eisbn><eisbn>9781000549416</eisbn><eisbn>9781000549485</eisbn><eisbn>1000549488</eisbn><eisbn>1000549410</eisbn><abstract>Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.
Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS
introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third-variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.
Key Features:
Parametric and nonparametric method in third variable analysis
Multivariate and Multiple third-variable effect analysis
Multilevel mediation/confounding analysis
Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis
R packages and SAS macros to implement methods proposed in the book</abstract><cop>United States</cop><pub>CRC Press</pub><doi>10.1201/9780429346941</doi><oclcid>1293245941</oclcid><tpages>16</tpages><tpages>294</tpages><tpages>278</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781000549416 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9781000549485 |
source | Ebook Central Perpetual and DDA |
subjects | confounding effects health disparities interaction effect intervention effect moderation Multiple multivariate mediation analysis Multivariate Statistics nonparametric models Probabilities & applied mathematics R (Computer program language) SAS (Computer program language) Statistical Theory & Methods Statistics Statistics-Data processing Statistics-Methodology Variables (Mathematics) |
title | Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Statistical%20Methods%20for%20Mediation,%20Confounding%20and%20Moderation%20Analysis%20Using%20R%20and%20SAS&rft.au=Yu,%20Qingzhao&rft.date=2022&rft.volume=1&rft.isbn=9781000549416&rft.isbn_list=1000549410&rft.isbn_list=9781032220086&rft.isbn_list=1032220082&rft.isbn_list=9780367365479&rft_id=info:doi/10.1201/9780429346941&rft_dat=%3Cproquest_askew%3EEBC6864797%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780429346941&rft.eisbn_list=0429346948&rft.eisbn_list=9781000549416&rft.eisbn_list=9781000549485&rft.eisbn_list=1000549488&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6864797&rft_id=info:pmid/&rfr_iscdi=true |