Advanced Linear Algebra

This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to module...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Roman, Steven
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 135
creator Roman, Steven
description This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications. The second edition contains two new chapters: a chapter on convexity, separation and positive solutions to linear systems and a chapter on the QR decomposition, singular values and pseudoinverses. The treatments of tensor products and the umbral calculus have been greatly expanded and there is now a discussion of determinants (in the chapter on tensor products), the complexification of a real vector space, Schur's lemma and Gersgorin disks.
doi_str_mv 10.1007/0-387-27474-X
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9780387274744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6311990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6734x-2f10c8ae3e88ed0f179f9a7b159b729b68304b58efef57c173b1f4e3c36021ad3</originalsourceid><addsrcrecordid>eNqN0EtPwzAMAOAgHmIaOyKuExeEUMFJmjg5btN4SJO4ILRblLbuVlba0YzBz6esXOCEL5atz5Zsxk45XHMAvIFIGowExhhH8z02sGig7ewa8f6f-oD12hkRKWHUEesJLTRag_yYDUJ4gTYkVyhtj52Nsq2vUsqGs6Ii3wxH5YKSxp-ww9yXgQY_uc-eb6dPk_to9nj3MBnNIq9Rxp-RyDmkxpMkYyiDnKPNrceEK5ugsIk2EuJEGcopV5hylAnPY5Kp1CC4z2SfXXaLfVjRR1jW5Sa4bUlJXa-C-3VVa686G9ZNUS2ocZ3i4L5_5MC11u2wm7f6otPrpn57p7Bxu6UpVZvGl246nmjJubXwDylBG4G6leedTH3wZVEV7rWu6kXj18vglIzBoJJfkUx3Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3068276</pqid></control><display><type>book</type><title>Advanced Linear Algebra</title><source>Springer Books</source><creator>Roman, Steven</creator><creatorcontrib>Roman, Steven</creatorcontrib><description>This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications. The second edition contains two new chapters: a chapter on convexity, separation and positive solutions to linear systems and a chapter on the QR decomposition, singular values and pseudoinverses. The treatments of tensor products and the umbral calculus have been greatly expanded and there is now a discussion of determinants (in the chapter on tensor products), the complexification of a real vector space, Schur's lemma and Gersgorin disks.</description><edition>Second Edition</edition><identifier>ISSN: 0072-5285</identifier><identifier>ISBN: 9780387274744</identifier><identifier>ISBN: 038727474X</identifier><identifier>ISBN: 9780387247663</identifier><identifier>ISBN: 0387247661</identifier><identifier>EISBN: 9780387274744</identifier><identifier>EISBN: 038727474X</identifier><identifier>DOI: 10.1007/0-387-27474-X</identifier><identifier>OCLC: 262679871</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Algebra &amp; number theory ; Algebras, Linear ; Linear and Multilinear Algebras, Matrix Theory ; Mathematics ; Mathematics and Statistics</subject><creationdate>2005</creationdate><tpages>487</tpages><format>487</format><rights>Steven Roman 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Graduate Texts in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-0-387-27474-4</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/0-387-27474-X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,38255,42511</link.rule.ids></links><search><creatorcontrib>Roman, Steven</creatorcontrib><title>Advanced Linear Algebra</title><description>This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications. The second edition contains two new chapters: a chapter on convexity, separation and positive solutions to linear systems and a chapter on the QR decomposition, singular values and pseudoinverses. The treatments of tensor products and the umbral calculus have been greatly expanded and there is now a discussion of determinants (in the chapter on tensor products), the complexification of a real vector space, Schur's lemma and Gersgorin disks.</description><subject>Algebra &amp; number theory</subject><subject>Algebras, Linear</subject><subject>Linear and Multilinear Algebras, Matrix Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0072-5285</issn><isbn>9780387274744</isbn><isbn>038727474X</isbn><isbn>9780387247663</isbn><isbn>0387247661</isbn><isbn>9780387274744</isbn><isbn>038727474X</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2005</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNqN0EtPwzAMAOAgHmIaOyKuExeEUMFJmjg5btN4SJO4ILRblLbuVlba0YzBz6esXOCEL5atz5Zsxk45XHMAvIFIGowExhhH8z02sGig7ewa8f6f-oD12hkRKWHUEesJLTRag_yYDUJ4gTYkVyhtj52Nsq2vUsqGs6Ii3wxH5YKSxp-ww9yXgQY_uc-eb6dPk_to9nj3MBnNIq9Rxp-RyDmkxpMkYyiDnKPNrceEK5ugsIk2EuJEGcopV5hylAnPY5Kp1CC4z2SfXXaLfVjRR1jW5Sa4bUlJXa-C-3VVa686G9ZNUS2ocZ3i4L5_5MC11u2wm7f6otPrpn57p7Bxu6UpVZvGl246nmjJubXwDylBG4G6leedTH3wZVEV7rWu6kXj18vglIzBoJJfkUx3Nw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Roman, Steven</creator><general>Springer Nature</general><general>Springer New York</general><general>Springer</general><scope>I4C</scope></search><sort><creationdate>2005</creationdate><title>Advanced Linear Algebra</title><author>Roman, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6734x-2f10c8ae3e88ed0f179f9a7b159b729b68304b58efef57c173b1f4e3c36021ad3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra &amp; number theory</topic><topic>Algebras, Linear</topic><topic>Linear and Multilinear Algebras, Matrix Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Roman, Steven</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roman, Steven</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Advanced Linear Algebra</btitle><seriestitle>Graduate Texts in Mathematics</seriestitle><date>2005</date><risdate>2005</risdate><volume>135</volume><issn>0072-5285</issn><isbn>9780387274744</isbn><isbn>038727474X</isbn><isbn>9780387247663</isbn><isbn>0387247661</isbn><eisbn>9780387274744</eisbn><eisbn>038727474X</eisbn><abstract>This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications. The second edition contains two new chapters: a chapter on convexity, separation and positive solutions to linear systems and a chapter on the QR decomposition, singular values and pseudoinverses. The treatments of tensor products and the umbral calculus have been greatly expanded and there is now a discussion of determinants (in the chapter on tensor products), the complexification of a real vector space, Schur's lemma and Gersgorin disks.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/0-387-27474-X</doi><oclcid>262679871</oclcid><tpages>487</tpages><edition>Second Edition</edition></addata></record>
fulltext fulltext
identifier ISSN: 0072-5285
ispartof
issn 0072-5285
language eng
recordid cdi_askewsholts_vlebooks_9780387274744
source Springer Books
subjects Algebra & number theory
Algebras, Linear
Linear and Multilinear Algebras, Matrix Theory
Mathematics
Mathematics and Statistics
title Advanced Linear Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Advanced%20Linear%20Algebra&rft.au=Roman,%20Steven&rft.date=2005&rft.volume=135&rft.issn=0072-5285&rft.isbn=9780387274744&rft.isbn_list=038727474X&rft.isbn_list=9780387247663&rft.isbn_list=0387247661&rft_id=info:doi/10.1007/0-387-27474-X&rft_dat=%3Cproquest_askew%3EEBC6311990%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780387274744&rft.eisbn_list=038727474X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3068276&rft_id=info:pmid/&rfr_iscdi=true