Foundations of Real and Abstract Analysis

The core of this book, Chapters 3 through 5, presents a course on metric, normed,andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR : in Chapter 3, that attribute isdistance; in Chapter 4, lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bridges, Douglas S
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 174
creator Bridges, Douglas S
description The core of this book, Chapters 3 through 5, presents a course on metric, normed,andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR : in Chapter 3, that attribute isdistance; in Chapter 4, length; and in Chapter 5, inner product. In addition to the standard topics that, arguably, should form part of the armoury of any graduate student in mathematics, physics, mathematical economics, theoretical statistics,. . . , this part of the book contains many results and exercises that are seldom found in texts on analysis at this level. Examples of the latter are Wong’s Theorem(3. 3. 12)showingthattheLebesguecoveringpropertyisequivalent to the uniform continuity property, and Motzkin’s result (5. 2. 2) that a nonempty closed subset of Euclidean space has the unique closest point property if and only if it is convex. The sad reality today is that, perceiving them as one of the harder parts oftheirmathematicalstudies,studentscontrivetoavoidanalysiscoursesat almost any cost, in particular that of their own educational and technical deprivation. Many universities have at times capitulated to the negative demand of students for analysis courses and have seriously watered down their expectations of students in that area. As a result, mathematics - jors are graduating, sometimes with high honours, with little exposure to anything but a rudimentary course or two on real and complex analysis, often without even an introduction to the Lebesgue integral.
doi_str_mv 10.1007/b97625
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9780387226200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3035301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a72487-bbe3766c3b54a9fa8c48310ec5790f2cf27e43e726ce525291a80fb16c9382803</originalsourceid><addsrcrecordid>eNqN0NtqFEEQBuAOGnHN4RmGIAQT1tRUTZ8u1yWJgYAgktumu9OTHdJ2b6ZnI_r0meyIeBHEq6Lgo6j_Z-ywho81gDxzWgrkO-wdkJKIAkG8-nt5zWYjwzlHxd-wmUYSmoOkt-yglM4B1LrhDcgZ-3CRN-nWDl1Opcpt9TXYWNl0Wy1cGXrrh2qRbPxZurLPdlsbSzj4PffYzcX5t-Xn-fWXy6vl4npuJTZKzp0LJIXw5HhjdWuVbxTVEDyXGlr0LcrQUJAofODIUddWQetq4TUpVEB741Pbw7bchx9lleNQzGMMLuf7YrRUf3I-25PJpph-mfXGxc5PYcZVa-IICokDKhIjfj_hsu67dBd6M52swTy3aqZWR3b6ArO9X3WP4QV9POl1nx82oQxm-6gPaawvmvNPSyEayUH8hyQgTlCP8miS3hYbu9SZ7znlu96uV8VwahRso_8bSakVPQGUd6Bh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC3035301</pqid></control><display><type>book</type><title>Foundations of Real and Abstract Analysis</title><source>Springer Books</source><creator>Bridges, Douglas S</creator><creatorcontrib>Bridges, Douglas S ; SpringerLink (Online service)</creatorcontrib><description>The core of this book, Chapters 3 through 5, presents a course on metric, normed,andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR : in Chapter 3, that attribute isdistance; in Chapter 4, length; and in Chapter 5, inner product. In addition to the standard topics that, arguably, should form part of the armoury of any graduate student in mathematics, physics, mathematical economics, theoretical statistics,. . . , this part of the book contains many results and exercises that are seldom found in texts on analysis at this level. Examples of the latter are Wong’s Theorem(3. 3. 12)showingthattheLebesguecoveringpropertyisequivalent to the uniform continuity property, and Motzkin’s result (5. 2. 2) that a nonempty closed subset of Euclidean space has the unique closest point property if and only if it is convex. The sad reality today is that, perceiving them as one of the harder parts oftheirmathematicalstudies,studentscontrivetoavoidanalysiscoursesat almost any cost, in particular that of their own educational and technical deprivation. Many universities have at times capitulated to the negative demand of students for analysis courses and have seriously watered down their expectations of students in that area. As a result, mathematics - jors are graduating, sometimes with high honours, with little exposure to anything but a rudimentary course or two on real and complex analysis, often without even an introduction to the Lebesgue integral.</description><edition>1</edition><identifier>ISSN: 0072-5285</identifier><identifier>ISBN: 0387226206</identifier><identifier>ISBN: 9780387226200</identifier><identifier>ISBN: 9780387982397</identifier><identifier>ISBN: 0387982396</identifier><identifier>ISBN: 1475771614</identifier><identifier>ISBN: 9781475771602</identifier><identifier>ISBN: 1475771606</identifier><identifier>ISBN: 9781475771619</identifier><identifier>EISBN: 0387226206</identifier><identifier>EISBN: 9780387226200</identifier><identifier>DOI: 10.1007/b97625</identifier><identifier>OCLC: 923695073</identifier><identifier>OCLC: 1259321278</identifier><identifier>OCLC: 36656441</identifier><language>eng</language><publisher>New York, NY: Springer Nature</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mathematics. Analysis ; Operations research ; Operations Research/Decision Theory ; Real Functions</subject><creationdate>2006</creationdate><tpages>338</tpages><format>338</format><rights>Springer-Verlag New York, Inc. 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Graduate Texts in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-0-387-22620-0</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b97625$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b97625$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,307,777,781,783,784,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttps://natlib-primo.hosted.exlibrisgroup.com/primo-explore/search?query=any,contains,993520823502836&amp;tab=catalogue&amp;search_scope=NLNZ&amp;vid=NLNZ&amp;offset=0$$DView record in National Library of New Zealand Catalogue$$Hfree_for_read</backlink></links><search><creatorcontrib>Bridges, Douglas S</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Foundations of Real and Abstract Analysis</title><description>The core of this book, Chapters 3 through 5, presents a course on metric, normed,andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR : in Chapter 3, that attribute isdistance; in Chapter 4, length; and in Chapter 5, inner product. In addition to the standard topics that, arguably, should form part of the armoury of any graduate student in mathematics, physics, mathematical economics, theoretical statistics,. . . , this part of the book contains many results and exercises that are seldom found in texts on analysis at this level. Examples of the latter are Wong’s Theorem(3. 3. 12)showingthattheLebesguecoveringpropertyisequivalent to the uniform continuity property, and Motzkin’s result (5. 2. 2) that a nonempty closed subset of Euclidean space has the unique closest point property if and only if it is convex. The sad reality today is that, perceiving them as one of the harder parts oftheirmathematicalstudies,studentscontrivetoavoidanalysiscoursesat almost any cost, in particular that of their own educational and technical deprivation. Many universities have at times capitulated to the negative demand of students for analysis courses and have seriously watered down their expectations of students in that area. As a result, mathematics - jors are graduating, sometimes with high honours, with little exposure to anything but a rudimentary course or two on real and complex analysis, often without even an introduction to the Lebesgue integral.</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics. Analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Real Functions</subject><issn>0072-5285</issn><isbn>0387226206</isbn><isbn>9780387226200</isbn><isbn>9780387982397</isbn><isbn>0387982396</isbn><isbn>1475771614</isbn><isbn>9781475771602</isbn><isbn>1475771606</isbn><isbn>9781475771619</isbn><isbn>0387226206</isbn><isbn>9780387226200</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2006</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNqN0NtqFEEQBuAOGnHN4RmGIAQT1tRUTZ8u1yWJgYAgktumu9OTHdJ2b6ZnI_r0meyIeBHEq6Lgo6j_Z-ywho81gDxzWgrkO-wdkJKIAkG8-nt5zWYjwzlHxd-wmUYSmoOkt-yglM4B1LrhDcgZ-3CRN-nWDl1Opcpt9TXYWNl0Wy1cGXrrh2qRbPxZurLPdlsbSzj4PffYzcX5t-Xn-fWXy6vl4npuJTZKzp0LJIXw5HhjdWuVbxTVEDyXGlr0LcrQUJAofODIUddWQetq4TUpVEB741Pbw7bchx9lleNQzGMMLuf7YrRUf3I-25PJpph-mfXGxc5PYcZVa-IICokDKhIjfj_hsu67dBd6M52swTy3aqZWR3b6ArO9X3WP4QV9POl1nx82oQxm-6gPaawvmvNPSyEayUH8hyQgTlCP8miS3hYbu9SZ7znlu96uV8VwahRso_8bSakVPQGUd6Bh</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bridges, Douglas S</creator><general>Springer Nature</general><general>Springer</general><general>Springer New York</general><scope>I4C</scope><scope>GKK</scope><scope>HIV</scope><scope>KRYSY</scope></search><sort><creationdate>2006</creationdate><title>Foundations of Real and Abstract Analysis</title><author>Bridges, Douglas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a72487-bbe3766c3b54a9fa8c48310ec5790f2cf27e43e726ce525291a80fb16c9382803</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics. Analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Real Functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Bridges, Douglas S</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection><collection>National Library of New Zealand Catalogue</collection><collection>National Bibliographic Database</collection><collection>Publications New Zealand</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bridges, Douglas S</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Foundations of Real and Abstract Analysis</btitle><seriestitle>Graduate Texts in Mathematics</seriestitle><date>2006</date><risdate>2006</risdate><volume>174</volume><issn>0072-5285</issn><isbn>0387226206</isbn><isbn>9780387226200</isbn><isbn>9780387982397</isbn><isbn>0387982396</isbn><isbn>1475771614</isbn><isbn>9781475771602</isbn><isbn>1475771606</isbn><isbn>9781475771619</isbn><eisbn>0387226206</eisbn><eisbn>9780387226200</eisbn><abstract>The core of this book, Chapters 3 through 5, presents a course on metric, normed,andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR : in Chapter 3, that attribute isdistance; in Chapter 4, length; and in Chapter 5, inner product. In addition to the standard topics that, arguably, should form part of the armoury of any graduate student in mathematics, physics, mathematical economics, theoretical statistics,. . . , this part of the book contains many results and exercises that are seldom found in texts on analysis at this level. Examples of the latter are Wong’s Theorem(3. 3. 12)showingthattheLebesguecoveringpropertyisequivalent to the uniform continuity property, and Motzkin’s result (5. 2. 2) that a nonempty closed subset of Euclidean space has the unique closest point property if and only if it is convex. The sad reality today is that, perceiving them as one of the harder parts oftheirmathematicalstudies,studentscontrivetoavoidanalysiscoursesat almost any cost, in particular that of their own educational and technical deprivation. Many universities have at times capitulated to the negative demand of students for analysis courses and have seriously watered down their expectations of students in that area. As a result, mathematics - jors are graduating, sometimes with high honours, with little exposure to anything but a rudimentary course or two on real and complex analysis, often without even an introduction to the Lebesgue integral.</abstract><cop>New York, NY</cop><pub>Springer Nature</pub><doi>10.1007/b97625</doi><oclcid>923695073</oclcid><oclcid>1259321278</oclcid><oclcid>36656441</oclcid><tpages>338</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISSN: 0072-5285
ispartof
issn 0072-5285
language eng
recordid cdi_askewsholts_vlebooks_9780387226200
source Springer Books
subjects Mathematical analysis
Mathematics
Mathematics and Statistics
Mathematics. Analysis
Operations research
Operations Research/Decision Theory
Real Functions
title Foundations of Real and Abstract Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Foundations%20of%20Real%20and%20Abstract%20Analysis&rft.au=Bridges,%20Douglas%20S&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2006&rft.volume=174&rft.issn=0072-5285&rft.isbn=0387226206&rft.isbn_list=9780387226200&rft.isbn_list=9780387982397&rft.isbn_list=0387982396&rft.isbn_list=1475771614&rft.isbn_list=9781475771602&rft.isbn_list=1475771606&rft.isbn_list=9781475771619&rft_id=info:doi/10.1007/b97625&rft_dat=%3Cproquest_askew%3EEBC3035301%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=0387226206&rft.eisbn_list=9780387226200&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3035301&rft_id=info:pmid/&rfr_iscdi=true